Three-Dimensional Autonomous Systems and Chaos

  • Stephen LynchEmail author


To introduce first-order ODEs in three variables.


  1. [1]
    N. Arnold, Chemical Chaos, Hippo, London, 1997.Google Scholar
  2. [2]
    J. Borresen and S. Lynch. Further investigation of hysteresis in Chua’s circuit, Int. J. Bifurcation and Chaos, 12 (2002), 129–134.Google Scholar
  3. [3]
    A. Buscarino, L. Fotuna, M. Frasca and G. Sciuto A Concise Guide to Chaotic Electronic Circuits, Springer, New York, 2014.Google Scholar
  4. [4]
    J.P. Eckmann, S.O. Kamphorst, D. Ruelle and S. Ciliberto, Lyapunov exponents from time series, Physical Review A, 34(6) (1986), 4971–4979.Google Scholar
  5. [5]
    S. Ellner and P. Turchin, Chaos in a noisy world - new methods and evidence from time-series analysis, American Naturalist 145(3) (1995), 343–375.Google Scholar
  6. [6]
    R. Field and M. Burger, eds., Oscillations and Travelling Waves in Chemical Systems, Wiley, New York, 1985.Google Scholar
  7. [7]
    K. Geist, U. Parlitz and W. Lauterborn, Comparison of different methods for computing Lyapunov exponents, Progress of Theoretical Physics, 83-5 (1990), 875–893.Google Scholar
  8. [8]
    G.A. Gottwald and I.Melbourne, A new test for chaos in deterministic systems, Proc. Roy. Soc. Lond. A, 460-2042 (2004), 603–611.Google Scholar
  9. [9]
    R.C. Hilborn, Chaos and Nonlinear Dynamics - An Introduction for Scientists and Engineers, Oxford University Press, Second ed., Oxford, UK, 2000.Google Scholar
  10. [10]
    B. Krauskopf, H.M. Osinga, E.J. Doedel, M.E. Henderson, J.M. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Int. J. Bifurcation and Chaos 15(3) (2005), 763–791.Google Scholar
  11. [11]
    Lorenz E.N. Deterministic non-periodic flow, J. Atmos. Sci., 20 (1963), 130–141.Google Scholar
  12. [12]
    R.N. Madan, Chua’s Circuit: A Paradigm for Chaos, Singapore, World Scientific, 1993.Google Scholar
  13. [13]
    A. Pikovsky and A. Politi, Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge University Press, Cambridge, 2016.Google Scholar
  14. [14]
    M.T. Rosenstein, J.J. Collins and C.J. Deluca, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65 (1–2), (1993), 117–134.Google Scholar
  15. [15]
    O.E. Rössler, An equation for continuous chaos, Phys. Lett., 57-A (1976), 397–398.Google Scholar
  16. [16]
    S.K. Scott, Oscillations, Waves, and Chaos in Chemical Kinetics, Oxford Science Publications, Oxford, UK, 1994.Google Scholar
  17. [17]
    C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer-Verlag, New York, 1982.Google Scholar
  18. [18]
    S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Springer-Verlag, New York, 2003.Google Scholar
  19. [19]
    A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16, (1985), 285–317.Google Scholar
  20. [20]
    P. Zhou, X.H. Luo and H.Y. Chen, A new chaotic circuit and its experimental results, Acta Physica Sinica 54(11), (2005), 5048–5052.Google Scholar
  21. [21]
    M. Zoltowski, An adaptive reconstruction of chaotic attractors out of their single trajectories, Signal Process., 80(6) (2000), 1099–1113.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations