Interacting Species

  • Stephen LynchEmail author


To apply the theory of planar systems to modeling interacting species.


  1. [1]
    F. Brauer and C. Castillo-Chavez, Systems for Biological Modeling: An Introduction (Advances in Applied Mathematics), CRC Press, Florida, 2015.Google Scholar
  2. [2]
    L. Edelstein-Keshet, Mathematical Models in Biology (Classics in Applied Mathematics), SIAM, Philadelphia, 2005.Google Scholar
  3. [3]
    S.R. Hall, M.A. Duffy and C.E. Cáceres, Selective predation and productivity jointly drive complex behavior in host-parasite systems, The American Naturalist, 165(1) (2005), 70–81.Google Scholar
  4. [4]
    A. Hastings, Population Biology: Concepts and Models, Springer-Verlag, New York, 2005.Google Scholar
  5. [5]
    S.B. Hsu, T.W. Hwang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwan J. Math. 3 (1999), 35–53.Google Scholar
  6. [6]
    Y. Lenbury, S. Rattanamongkonkul, N. Tumravsin, and S. Amornsamakul, Predator-prey interaction coupled by parasitic infection: limit cycles and chaotic behavior, Math. Comput. Model., 30-9/10 (1999), 131–146.Google Scholar
  7. [7]
    A.J. Lotka, Elements of Physical Biology, William and Wilkins, Baltimore, 1925.Google Scholar
  8. [8]
    F. Lutscher, T. Iljon, Competition, facilitation and the Allee effect, OIKOS, 122(4) (2013), 621–631.Google Scholar
  9. [9]
    H.R. Thieme, Mathematics in Population Biology (Princeton Series in Theoretical and Computational Biology), Princeton University Press, Princeton, NJ, 2003.Google Scholar
  10. [10]
    V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animalicanniventi, Mem. R. Com. Tolassogr. Ital., 431 (1927), 1–142.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations