Advertisement

Binary Oscillator Computing

  • Stephen Lynch
Chapter

Abstract

To provide a brief historical introduction to binary oscillator computing.

Bibliography

  1. [1]
    P. Ashwin and J. Borresen, Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phys Rev E (2004) 70:026203.MathSciNetCrossRefGoogle Scholar
  2. [2]
    A.K. Barreiro, E. Shea-Brown, and E.L. Thilo, Time scales of spike-train correlation for neural oscillators with common drive. Phys Rev E (2010) 81:011916.CrossRefGoogle Scholar
  3. [3]
    J. Borresen and S. Lynch, Neuronal computers, Nonlinear Anal. Theory, Meth. and Appl., 71 (2009), 2372–2376Google Scholar
  4. [4]
    J. Borresen and S. Lynch, Oscillatory threshold logic, PLoS ONE 7 (11): e48498. doi: 10.1371/journal.pone.0048498 (2012).
  5. [5]
    Z. Chen, Y.M. Lin, M.J. Rooks, et al., Graphene nano-ribbon electronics, Physica E Low-Dimensional Systems and Nanostructures, 40 (2007), 228–232.CrossRefGoogle Scholar
  6. [6]
    P. Crotty, D. Schult and K. Segall, Josephson junction simulation of neurons, Phys. Rev., 82, 011914, 2010.Google Scholar
  7. [7]
    S.K. Dana, D.C. Sengupta and Hu Chin Kun, Spiking and bursting in Josephson junction, IEEE Transactions on Circuits and Systems 11-Express Briefs, 10 (2006), 1031–1034.Google Scholar
  8. [8]
    A. Destexhe, Z.F. Mainen and T.J. Sejnowski, An efficient method for computing synaptic conductances based on a kinetic model of receptor binding, Neural Computation 6, (1994), 14–18.Google Scholar
  9. [9]
    T. Filippov, M. Dorojevets, A. Sahu, A.F. Kirichenko, C. Ayala and O. Mukhanov, 8-bit asynchronous wave-pipelined RSFQ arithmetic-logic unit, IEEE Trans. on Applied Superconductivity, 21 (2011) pp 847–851.Google Scholar
  10. [10]
    T. Filippov, A. Sahu, A.F. Kirichenko, I.V. Vernik, M. Dorojevets, C.L. Ayala and O. Mukhanov, 20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit, Physics Procedia, 36 (2012), 59–65.Google Scholar
  11. [11]
    R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membranes, Biophys., 1182, (1961) 445–466.Google Scholar
  12. [12]
    D.O. Hebb, The organization of behaviour: A Neurophysiological Theory, Wiley, New York, 1949.Google Scholar
  13. [13]
    A.L. Hodgkin and A.F. Huxley, A qualitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), 500–544, 1952. Reproduced in Bull. Math. Biol., vol. 52, (1990) pp 25–71.Google Scholar
  14. [14]
    A.F. Kirichenko, S. Sarwana, D. Gupta, I. Rochwarger and O. Mukhanov, Multi-channel time digitizing system, IEEE Trans. Appl. Supercond., 13 (2003), 454–458.Google Scholar
  15. [15]
    S. Lynch and J. Borresen, Binary Half Adder using Oscillators, International Publication Number, WO 2012/001372 A1, (2012) 1–57.Google Scholar
  16. [16]
    S. Lynch and J. Borresen, Binary Half Adder and Other Logic Circuits, UK Patent Number, GB 2481717 A, (2012) 1–57.Google Scholar
  17. [17]
    S. Lynch and J. Borresen, Josephson junction binary oscillator computing, Proceedings of the IEEE International Superconductive Electronics Conference, Cambridge, Massachusetts, (2013), 1–3.Google Scholar
  18. [18]
    S. Lynch, J. Borresen and M.A. Slevin (2016) US Patent: Assay utilising cellular binary half-adder system, Patent Application Number 14/230, 511, Publication Number US9274096 B2.Google Scholar
  19. [19]
    O.A. Mukhanov and V.K. Semenov, Reproduction of the Single Flux Quantum pulses in Josephson junction systems. II. Neuristor lines and logic elements, Mikroelektronika [Sov. Microelectronics], 17 (1988), 155–161.Google Scholar
  20. [20]
    O.A. Mukhanov and S.V. Rylov, Time-to-Digital converters based on RSFQ digital counters, IEEE Trans. Appl. Supercond., 7 (1997), 2669–2672.Google Scholar
  21. [21]
    S. Muroga, Threshold Logic and Its Applications, Wiley, New York, 1971.zbMATHGoogle Scholar
  22. [22]
    W. McCulloch and W. Pitts, A logical calculus of the ideas imminent in nervous activity, Bull Math Biophys (1943) 5:115–133.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating 1214-nerve axons, Proc. IRL 50, (1970) 2061–2070.Google Scholar
  24. [24]
    National Security Agency, Superconducting Technology Assessment report, available: www.nitrd.gov/PUBS/nsa/sta.pdf, 2005 [April 30, 2014].
  25. [25]
    T. Onomi, Y. Maenami and K. Nakajima, Superconducting neural network for solving a combinatorial optimization problem, IEEE Trans. Appl. Supercond., 21 (2011), 701–704.Google Scholar
  26. [26]
    T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert and H. Toepfer, Reduced power consumption in superconducting electronics, IEEE Trans. on Applied Superconductivity, 21 (2011), 770–775.CrossRefGoogle Scholar
  27. [27]
    M.D. Picket, G. Medeiros-Ribeiro and R.S. Williams, A scalable neuristor built with Mott memristors Nature Materials, 12, 114, 2013.CrossRefGoogle Scholar
  28. [28]
    J. Rajendran, H. Manem, R. Karri, and G.S. Rose, An energy efficient memristive threshold logic circuit, IEEE Trans on Computers, (2012) 61:474–487.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    K. Segall, M. LeGro, S. Kaplan et al., Synchronization dynamics on the picosecond timescale in coupled Josephson junction neurons, preprint, arXiv:1608.04680, 2017.
  30. [30]
    R.M. Smeal, G.B. Ermentrout, and J.A. White, Phase response curves and synchronized neural networks, Phil Trans R Soc B. 365 (1551) (2010) 2402–2407.CrossRefGoogle Scholar
  31. [31]
    S. Vaidyanathan (Editor) and C. Volos (Editor), Advances in Memristors, Memristive Devices and Systems (Studies in Computational Intelligence), Springer, New York, 2017Google Scholar
  32. [32]
    R. Waser R, Nanoelectronics and Information Technology, Wiley, New York, 2012.Google Scholar
  33. [33]
    Y. Wei and J. Shen J, Novel universal threshold logic gate based on RTD and its application, Microelectronics Journal, (2011) 42:851–854.CrossRefGoogle Scholar
  34. [34]
    M. Zanin, F. Del Pozo, and S. Boccaletti, Computation emerges from adaptive synchronization of networking neurons, PloS ONE (2011) 11: e26467.CrossRefGoogle Scholar
  35. [35]
    X. Zhang, R. Wang, Z. Zhang, J. Qu, J. Cao, et al., Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population, Neurocomputing, 73 (13–15) (2010), 2665–2670.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations