Advertisement

Fractals and Multifractals

  • Stephen LynchEmail author
Chapter

Abstract

To provide a brief introduction to fractals.

Bibliography

  1. [1]
    P.S. Addison, Fractals and Chaos: An Illustrated Course, Institute of Physics, London, UK, 1997.Google Scholar
  2. [2]
    M. Alber and J. Peinke, Improved multifractal box-counting algorithm, virtual phase transitions, and negative dimensions, Phys. Rev. E 57-5, (1998), 5489–5493.Google Scholar
  3. [3]
    C. Bandt, M. Barnsley, R. Devaney, et al., Fractals, Wavelets, and their Applications: Contributions from the International Conference and Workshop on Fractals and Wavelets, Springer, New York, 2016.Google Scholar
  4. [4]
    S. Blacher, F. Brouers, R. Fayt and P. Teyssié, Multifractal analysis. A new method for the characterization of the morphology of multicomponent polymer systems, J. Polymer Sci. B: Polymer Physics 31, (1993), 655–662.Google Scholar
  5. [5]
    L.E. Calvet and A.J. Fisher, Multifractal Volatility: Theory, Forecasting, and Pricing, Academic Press, New York, London, 2008.Google Scholar
  6. [6]
    A.B. Chhabra, C. Meneveau, R.V. Jensen, and K.R. Sreenivasan, Direct determination of the \(f(\alpha )\) singularity spectrum and its application to fully developed turbulence, Phys. Rev. A 40-9, (1989), 5284–5294.Google Scholar
  7. [7]
    R.M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett Publishers, 1995.Google Scholar
  8. [8]
    K. Falconer, Fractals: A Very Short Introduction, Oxford University Press, Oxford, 2013.Google Scholar
  9. [9]
    K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, New York, 2003.Google Scholar
  10. [10]
    K.J. Falconer and B. Lammering, Fractal properties of generalized Sierpiński triangles, Fractals 6-1, (1998), 31–41.Google Scholar
  11. [11]
    J. Grazzini, A. Turiel, H. Yahia, and I. Herlin, A multifractal approach for extracting relevant textural areas in satellite meteorological images, (An article from: Environmental Modelling and Software), (HTML, Digital), Elsevier, 2007.Google Scholar
  12. [12]
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman, Fractal measures and their singularities, Phys. Rev. A 33, (1986), 1141.Google Scholar
  13. [13]
    D. Harte, Multifractals: Theory and Applications, Chapman and Hall, London, UK, 2001.Google Scholar
  14. [14]
    Li Hua, D. Ze-jun, and Wu Ziqin, Multifractal analysis of the spatial distribution of secondary-electron emission sites, Phys. Rev. B 53-24, (1996), 16631–16636.Google Scholar
  15. [15]
    N. Lesmoir-Gordon, Introducing Fractal Geometry, 3rd ed., Totem Books, 2006.Google Scholar
  16. [16]
    J. Mach, F. Mas, and F. Sagués, Two representations in multifractal analysis, J. Phys. A: Math. Gen. 28, (1995), 5607–5622.Google Scholar
  17. [17]
    B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Co., New York, 1983.Google Scholar
  18. [18]
    S.L. Mills, G.C. Lees, C.M. Liauw, R.N. Rothon and S. Lynch, Prediction of physical properties following the dispersion assessment of flame retardant filler/polymer composites based on the multifractal analysis of SEM images, J. Macromolecular Sci. B- Physics 44-6, (2005), 1137–1151.Google Scholar
  19. [19]
    S.L. Mills, G.C. Lees, C.M. Liauw and S. Lynch, An improved method for the dispersion assessment of flame retardent filler/polymer systems based on the multifractal analysis of SEM images, Macromolecular Materials and Engineering 289-10, (2004), 864–871.Google Scholar
  20. [20]
    J.M.R. Moreira, L.C. Gomes, K.A. Whitehead, S. Lynch, L. Tetlow and F.J. Mergulhao Effect of surface conditioning with cellular extracts on Escherichia coli adhesion and initial biofilm formation, Food and Bioproducts Processing 104, (2017), 1–12.Google Scholar
  21. [21]
    J. Muller, O.K. Huseby and A. Saucier, Influence of multifractal scaling of pore geometry on permeabilities of sedimentary rocks, Chaos, Solitons and Fractals 5-8, (1995), 1485–1492.Google Scholar
  22. [22]
    H-O. Peitgen, H. Jürgens, and D Saupe, Chaos and Fractals, Springer-Verlag, 1992.Google Scholar
  23. [23]
    H-O. Peitgen (ed.), E.M. Maletsky, H. Jürgens, T. Perciante, D. Saupe, and L. Yunker, Fractals for the Classroom: Strategic Activities, Volume 1, Springer-Verlag, New York, 1991.Google Scholar
  24. [24]
    N. Sarkar and B.B. Chaudhuri, Multifractal and generalized dimensions of gray-tone digital images, Signal Processing, 42, (1995), 181–190.Google Scholar
  25. [25]
    L. Seuront, Fractals and Multifractals in Ecology and Aquatic Science, CRC Press, 2009.Google Scholar
  26. [26]
    V. Silberschmidt, Fractal and multifractal characteristics of propagating cracks, J. de Physique IV 6, (1996), 287–294.Google Scholar
  27. [27]
    H.F. Stanley and P. Meakin, Multifractal phenomena in physics and chemistry, Nature 335, (1988), 405–409.Google Scholar
  28. [28]
    L. Tetlow, S. Lynch and K. Whitehead, The effect of surface properties on bacterial retention: a study utilising stainless steel and TiN/25.65at.%Ag substrata, Food and Bioproducts Processing 102 (2017), 332–339.Google Scholar
  29. [29]
    D. Wickens, S. Lynch, P. Kelly, G. West, K. Whitehead and J. Verran, Quantifying the pattern of microbial cell dispersion, density and clustering on surfaces of differing chemistries and topographies using multifractal analysis, Journal of Microbiological Methods, 104, (2014), 101–108.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations