Electromagnetic Waves and Optical Resonators

  • Stephen LynchEmail author


To introduce some theory of electromagnetic waves.


  1. [1]
    G.P. Agrawal, Nonlinear Fiber Optics, 5th ed., Academic Press, New York, London, 2012.Google Scholar
  2. [2]
    G.P. Agrawal, Applications in Nonlinear Fiber Optics, 2nd ed., Academic Press, New York, London, 2008.Google Scholar
  3. [3]
    T. Bischofberger and Y.R. Shen, Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferometer, Phys. Rev. A 19, (1979), 1169–1176.Google Scholar
  4. [4]
    R.W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, New York, London, 2008.Google Scholar
  5. [5]
    Chao-Xiang Shi, Nonlinear fiber loop mirror with optical feedback, Optics Comm. 107, (1994), 276–280.Google Scholar
  6. [6]
    N.J. Doran and D. Wood, Nonlinear-optical loop mirror, Optics Lett. 13, (1988), 56–58.Google Scholar
  7. [7]
    F.S. Felber and J.H. Marburger, Theory of nonresonant multistable optical devices, Appl. Phys. Lett. 28, (1976), 731.Google Scholar
  8. [8]
    W.J. Firth, Stability of nonlinear Fabry-Perot resonators, Optics Comm. 39-5, (1981), 343–346.Google Scholar
  9. [9]
    H.M. Gibbs, Optical bistability: Controlling light with light, Academic Press, New York, London, 1985.Google Scholar
  10. [10]
    K. Ikeda, H. Daido, and O. Akimoto, Optical turbulence: chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett. 45-9, (1980), 709–712.Google Scholar
  11. [11]
    Y.H. Ja, Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect, IEEE J. Quantum Electron. 30-2, (1994), 329–333.Google Scholar
  12. [12]
    H. Li and K. Ogusu, Analysis of optical instability in a double-coupler nonlinear fiber ring resonator, Optics Comm. 157, (1998), 27–32.Google Scholar
  13. [13]
    S. Lynch and A.L. Steele, Nonlinear Optical Fibre Resonators with Applications in Electrical Engineering and Computing, in Applications of Nonlinear Dynamics and Chaos in Engineering, Santo Banerjee, Mala Mitra, Lamberto Rondoni (Eds.), Springer, 1, (2011) 65–84.Google Scholar
  14. [14]
    S. Lynch, A.L. Steele, and J.E. Hoad, Stability analysis of nonlinear optical resonators, Chaos, Solitons and Fractals, 9-6, (1998) 935–946.Google Scholar
  15. [15]
    P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, Cambridge University Press, Cambridge, UK, 2005.Google Scholar
  16. [16]
    J.H. Marburger and F.S. Felber, Theory of a lossless nonlinear Fabry-Perot interferometer, Phys. Rev. A 17, (1978), 335–342.Google Scholar
  17. [17]
    R. Matthews, Catch the wave, New Scientist, 162-2189, (1999), 27–32.Google Scholar
  18. [18]
    H. Natsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matouka, Observation of bifurcation to chaos in an all-optical bistable system, Phys. Rev. Lett. 50, (1983), 109–112.Google Scholar
  19. [19]
    K. Ogusu, A.L. Steele, J.E. Hoad, and S. Lynch, Corrections to and comments on “Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator”, IEEE J. Quantum Electron., 33, (1997), 2128–2129.Google Scholar
  20. [20]
    T. Schneider, Nonlinear Optics in Telecommunications, Springer-Verlag, New York, 2004.Google Scholar
  21. [21]
    S.D. Smith, Towards the optical computer, Nature 307, 26 January, (1984), 315–316.Google Scholar
  22. [22]
    P.W. Smith and E.H. Turner, Appl. Phys. Lett. 30, (1977), 280–281.Google Scholar
  23. [23]
    A.L. Steele, S. Lynch, and J.E. Hoad, Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback, Optics Comm. 137, (1997), 136–142.Google Scholar
  24. [24]
    A. Szöke, V. Daneu, J. Goldhar, and N.A. Kirnit, Bistable optical element and its applications, Appl. Phys. Lett. 15, (1969), 376.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations