Delay Differential Equations

  • Stephen LynchEmail author


To introduce the method of steps for Delay Differential Equations (DDEs).


  1. [1]
    R.P. Agarwal, D. O’Regan and S.H. Saker, Oscillation and Stability of Delay Models in Biology, Springer, New York, 2016.Google Scholar
  2. [2]
    Z. Agur, L. Arakelyan, P. Daugulis and Y. Dinosaur, Hopf point analysis for angiogenesis models, Discrete and Continuous Dynamical Systems-Series B 4, (2004), 29–38.Google Scholar
  3. [3]
    B.J. Altman, Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer, Front. Cell Dev. Bill. 4:62. doi: 10.3389/fcell.2016.00062.eCollection (2016).
  4. [4]
    M. Bodnar, M.J. Piotrowska, U. Forys and E. Nizinska, Model of tumour angiogenesis - analysis of stability with respect to delays, Math. Biosciences and Eng, 10, (2013), 19–35.Google Scholar
  5. [5]
    K. Chakraborty, M. Chakraborty and T.K. Kar, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay, Nonlinear Analysis-Hybrid Systems 5, (2011), 613–625.Google Scholar
  6. [6]
    K.L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol. 35 (1996), 240–260.Google Scholar
  7. [7]
    O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O Walther, Delay Equations: Functional-,Complex-, and Nonlinear Analysis, Springer, New York, 1995.Google Scholar
  8. [8]
    T. Erneux, Applied Delay Differential Equations, Springer, New York, 2009.Google Scholar
  9. [9]
    T. Erneux, L. Larger, M.W. Lee and J.P. Goedgebuer, Ikeda Hopf bifurcation revisited, Physica D 194, (2004), 49–64.Google Scholar
  10. [10]
    T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. of Math. Anal. and Appl. 254 (2001), 433–463.Google Scholar
  11. [11]
    K. Gopalsamy and X.Z.He, Stability in asymmetric Hopfield nets with transmission delays, Physica D 76, (1994), 344–358.Google Scholar
  12. [12]
    L. Guerrini, Time delay in a neoclassical growth model with differential saving, Int. J. of Pure and Applied Mathematics 78, (2012), 999–1003.Google Scholar
  13. [13]
    P. Hahnfeltd, D. Paigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res. 59, (1999), 4770–4775.Google Scholar
  14. [14]
    G. Huang, Y. Takeuchi, W. Ma et al., Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate, Bulletin Math. Biol. 72 (2010), 1192–1207.Google Scholar
  15. [15]
    G.E. Hutchinson, Circular causal system in ecology, Ann. New York Acad. Sci. 50, (1948), 221–246.Google Scholar
  16. [16]
    M. Lakshmanan and D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems, Springer, New York, 2011.Google Scholar
  17. [17]
    S. Lynch and J. Borresen J, Oscillations, feedback and bifurcations in mathematical models of angiogenesis and haematopoiesis, in Handbook of Vascular Biology Techniques, Slevin M, McDowell G, Cao Y, Kitajewski J eds., Springer, New York, (2015), 373–390.Google Scholar
  18. [18]
    S. Lynch, R.A. Alharbey, S.S. Hassan and H.A. Batarfi, Delayed-dynamical bistability within and without rotating wave approximation, J. of Nonlinear Optical Physics and Materials 24, (2015), 1550037.Google Scholar
  19. [19]
    M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977) 287–289.Google Scholar
  20. [20]
    P.E. Rap, An atlas of cellular oscillators, J. Exp. Biol. 81 (1979), 281–306.Google Scholar
  21. [21]
    E. Schmitt, Uber eine Klasse linearer funktionaler Differentialgleichungen, Math. Ann. 70, (1911), 499–524.Google Scholar
  22. [22]
    P.S. Schopf and M.J. Suarez (1988) Vacillations in a coupled ocean-atmosphere model, J. Atmos. Sci. 45 (1988), 549–566.Google Scholar
  23. [23]
    Y.A. Sharaby, S. Lynch and S.S. Hassan, Inhomogeneous and transverse field effects on time delayed optical bistability inside and outside the rotating wave approximation, J. of Nonlinear Optical Physics and Materials 25, (2016), 1650021.Google Scholar
  24. [24]
    J. Sieber and B. Krauskopf, Complex balancing motions of an inverted pendulum subject to delayed feedback control, Physica D 197, (2004), 332–345.Google Scholar
  25. [25]
    H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2010.Google Scholar
  26. [26]
    Y.N. Xiao and L.S. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosciences 171 (2001), 59–82.Google Scholar
  27. [27]
    S. Yom-Tov and I. Golani, Oscillators in the human body and circular-muscle gymnastics, Med. Hypothesis 41 (1993), 118–122.Google Scholar
  28. [28]
    P. Yu, Y. Yuan and J. Xu, Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback, Communications in Nonlinear Science and Numerical Simulation 7, (2002), 69–91.Google Scholar
  29. [29]
    H. Zhang, L. Chen and J.J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlin. Anal. Real-World Appl. 9 (2008), 1714-1726.Google Scholar
  30. [30]
    Y. Zhang, J.M. Wallace and D.S. Battisti, DS, ENSO-like interdecadal variability: 1900-93, J. of Climate 10 (1997), 1004–1020.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations