The Second Part of Hilbert’s Sixteenth Problem

  • Stephen LynchEmail author


To describe the second part of Hilbert’s sixteenth problem.


  1. [1]
    N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium point of focus or center type, Amer. Math. Soc. Trans. 5, (1962), 396–414.Google Scholar
  2. [2]
    T.R. Blows and C. Rousseau, Bifurcation at infinity in polynomial vector fields, J. Differential Equations 104, (1993), 215–242.Google Scholar
  3. [3]
    T.R. Blows and N.G. Lloyd, The number of small-amplitude limit cycles of Liénard equations, Math. Proc. Camb. Philos. Soc. 95, (1984), 359–366.Google Scholar
  4. [4]
    L.A. Cherkas, Conditions for a Liénard equation to have a center, Differentsial’nye Uravneniya 12, (1976), 201–206.Google Scholar
  5. [5]
    C.J. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity 12, (1999), 1099–1112.Google Scholar
  6. [6]
    C.J. Christopher and N.G. Lloyd, Small-amplitude limit cycles in polynomial Liénard systems, Nonlinear Diff. Eqns. Appl. 3, (1996), 183–190.Google Scholar
  7. [7]
    C.J. Christopher and N.G. Lloyd, Polynomial systems: a lower bound for the Hilbert numbers, Proc. Roy. Soc. Lond. A 450, (1995), 219–224.Google Scholar
  8. [8]
    W.A. Coppel, Some quadratic systems with at most one limit cycle, Dynamics Reported, New York 2, (1988), 61–68.Google Scholar
  9. [9]
    F. Dumortier, D. Panazzolo and R. Roussarie, More limit cycles than expected in Liénard equations Proceedings of the American Mathematical Society 135(6), (2007), 1895–1904.Google Scholar
  10. [10]
    F. Dumortier and L. Chengzhi, Quadratic Liénard equations with quadratic damping, J. Diff. Eqns 139, (1997), 41–59.Google Scholar
  11. [11]
    F. Dumortier and L. Chengzhi, On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations, Nonlinearity 9, (1996), 1489–1500.Google Scholar
  12. [12]
    J. Ecalle, J. Martinet, J. Moussu and J.P. Ramis, Non-accumulation des cycles-limites I, C.R. Acad. Sci. Paris Sér. I Math. 304, (1987), 375–377.Google Scholar
  13. [13]
    H. Giacomini and S. Neukirch, Improving a method for the study of limit cycles of the Liénard equation, Phys. Rev. E 57, (1998), 6573–6576.Google Scholar
  14. [14]
    Y. Ilyashenko, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. 39-3, (2002), 301–354.Google Scholar
  15. [15]
    Y. Ilyashenko, Finiteness Theorems for Limit Cycles, Translations of Mathematical Monographs 94, American Mathematical Society, Providence, RI, 1991.Google Scholar
  16. [16]
    J. Jiang, H. Maoan, Y. Pei and S. Lynch, Small-amplitude limit cycles of two types of symmetric Liénard systems, Int. J. of Bifurcation and Chaos, 17(6), (2007), 2169–2174.Google Scholar
  17. [17]
    Li Jibin, Hilbert’s sixteenth problem and bifurcations of planar polynomial vector fields, Int, J. of Bifurcation and Chaos 13, (2003), 47–106.Google Scholar
  18. [18]
    Li Jibin and Li Chunfu, Global bifurcation of planar disturbed Hamiltonian systems and distributions of limit cycles of cubic systems, Acta. Math. Sinica 28, (1985), 509–521.Google Scholar
  19. [19]
    A. Lins, W. de Melo and C. Pugh, On Liénards equation with linear damping, Lecture Notes in Mathematics, 597, (Edited by J. Palis and M. do Carno), 335-357, Springer-Verlag, Berlin, 1977, 335–357.Google Scholar
  20. [20]
    Han Maoan and Jibin Li, Lower bounds for the Hilbert number of polynomial systems, J. of Differential Equations 252(4), (2012) 3278–3304.Google Scholar
  21. [21]
    Han Maoan and V.G. Romanovski, On the number of limit cycles of polynomial Lienard systems, Nonlinear Analysis - Real World Applications, 14(3), (2013), 1655–1668.Google Scholar
  22. [22]
    A. Marasco and C. Tenneriello, Periodic solutions of a 2D-autonomous system using Mathematica, Mathematical and Computer Modelling 45(5-6), (2007), 681–693.Google Scholar
  23. [23]
    H.N. Moreira, Liénard-type equations and the epidemiology of maleria, Ecological Modelling 60, (1992), 139–150.Google Scholar
  24. [24]
    Y. Pei and H. Maoan, Twelve limit cycles in a cubic case of the 16’th Hilbert problem, Int. J. of Bifurcation and Chaos 15, (2005), 2191–2205.Google Scholar
  25. [25]
    G.S. Rychkov, The maximum number of limit cycles of the system \(\dot{x}=y-a_0x-a_1x^3-a_2x^5, \dot{y}=-x\) is two, Differentsial’nye Uravneniya 11, (1973), 380–391.Google Scholar
  26. [26]
    Shi Songling, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica A 23, (1980), 153–158.Google Scholar
  27. [27]
    K.S. Sibirskii, The number of limit cycles in the neighbourhood of a critical point, Differential Equations 1, (1965), 36–47.Google Scholar
  28. [28]
    X.B. Sun and W.T. Huang, Bounding the number of limit cycles for a polynomial Lienard system by using regular chains, J. of Symbolic Computation 79, (2017), 197–210.Google Scholar
  29. [29]
    Y.Q. Xiong, and M.A. Han, New lower bounds for the Hilbert number of polynomial systems of Liénard type, J. of Diff Eqns. 257, (2014), 2565–2590.Google Scholar
  30. [30]
    Zhang Zhifen, Ding Tongren, Huang Wenzao, and Dong Zhenxi, Qualitative Theory of Differential Equations, Translation of Mathematical Monographs 102, American Mathematical Society, Providence, RI, 1992.Google Scholar
  31. [31]
    H. Zoladek, Eleven small limit cycles in a cubic vector field, Nonlinearity 8, (1995), 843–860.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations