Advertisement

Experimental Evaluations and Discussion

  • Muhammad Usman Karim Khan
  • Muhammad Shafique
  • Jörg Henkel
Chapter

Abstract

The experimental evaluation of the techniques presented in Chaps. 4 and 5 are discussed in this chapter. In the previous chapters, we have already included the sensitivity analysis of the individual parts within the algorithmic and architectural details, whenever deemed useful. Here, the main results and comparison with other state-of-the-art techniques are presented, to provide an overview to the reader about gains and drawbacks of these techniques. Major emphasis of the results is video encoding, specifically H.264/AVC and HEVC video encoders. It must also be noted that these encoders have much more modules and higher complexity than many benchmark applications available in Parsec [1], MediaBench [2], Cosmic [3], and MiBench [4] benchmark suites.

References

  1. 1.
    Bienia, C. (2011). Benchmarking modern multiprocessors. Princeton University.Google Scholar
  2. 2.
    Fritts, J. MediaBench II. [Online]. Available: http://euler.slu.edu/~fritts/mediabench/. Accessed 6 Oct 2015.
  3. 3.
    Wang, Z., Liu, W., Xu, J., Li, B., Iyer, R., Illikkal, R., Wu, X., Mow, W. H., & Ye, W. (2014). A case study on the communication and computation behaviors of real applications in noc-based MPSoCs. In Annual Symposium on VLSI.Google Scholar
  4. 4.
    Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., & Brown, R. B. (2001). MiBench: A free, commercially representative embedded benchmark suite. In International Workshop on Workload Characterization (WWC).Google Scholar
  5. 5.
    POSIX Threads for Windows – REFERENCE - Pthreads-w32. sourceware.org, [Online]. Available: https://sourceware.org/pthreads-win32/manual/. Accessed 6 Oct 2015.
  6. 6.
    HEVC reference software. Fraunhofer Institute, [Online]. Available: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/. Accessed 29 Aug 2013.
  7. 7.
    HEVC x265 encoder. Google Code, [Online]. Available: https://code.google.com/p/x265. Accessed 29 Aug 2013.
  8. 8.
    4×Six-Core AMD Opteron processor. [Online]. Available: http://www.amd.com/en-us/products/server/benchmarks/sap-sd-two-tier-four-socket. Accessed 08 Sept 2014.
  9. 9.
    Carlson, T., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In SC.Google Scholar
  10. 10.
    Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Microarchitecture.Google Scholar
  11. 11.
    Ma, K., Li, X., Chen, M., & Wang, X. (2011). Scalable power control for many-core architectures running multi-threaded applications. In Internation Symposium on Computer Architecture.Google Scholar
  12. 12.
    Sharifi, A., Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2012). PEPON: Performance-aware hierarchical power budgeting for NoC based multicores. In Parallel Architectures and Compilation Techniques.Google Scholar
  13. 13.
    Bjontegaard, G. (2001). Calculation of average PSNR differences between RD-curves. VCEG Contribution VCEG-M33.Google Scholar
  14. 14.
    Rosas, C. Morajko, A. Jorba, J., & Cesar, E. (2011). Workload balancing methodology for data-intensive applications with divisible load. In Symposium on Computer Architecture and High Performance Computing.Google Scholar
  15. 15.
    Colin, A., Kandhalu, A., & Rajkumar, R. (2015). Energy-efficient allocation of real-time applications onto single-ISA heterogeneous multi-core processors. Journal of Signal Processing Systems, pp. 1–20.Google Scholar
  16. 16.
    Cesar, E., Moreno, A., Sorribes, J., & Luque, E. (2006). Modeling Master/Worker applications for automatic performance tuning. Parallel Computing, 32(7), 568–589.CrossRefGoogle Scholar
  17. 17.
    Esmaeilzadeh, H., Blem, E., Amant, R., Sankaralingam, K., & Burger, D. (2011). Dark silicon and the end of multicore scaling. In International Symposium on Computer Architecture.Google Scholar
  18. 18.
    ITRS. (2011). International technology roadmap for semiconductors, 2010 update.Google Scholar
  19. 19.
    Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Software architecture of high efficiency video coding for many-core systems with power-efficient workload balancing. In Design, Automation and Test in Europe.Google Scholar
  20. 20.
    Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., & Chen, Y. (2008). Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In Design Automation Conference (DAC).Google Scholar
  21. 21.
    Bossen, F. (2012). Common test conditions. Joint Collaborative Team on Video Coding (JCT-VC) Doc. I1100.Google Scholar
  22. 22.
    Taiwan Semiconductor Manufacturing Company Limited. TSMC, [Online]. Available: http://www.tsmc.com/. Accessed 7 Oct 2015.
  23. 23.
    Design Compiler. Synopsys, [Online]. Available: http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/. Accessed 7 Oct 2015.
  24. 24.
    ModelSim – Leading Simulation and Debugging. Mentor Graphics, [Online]. Available: http://www.mentor.com/products/fpga/model/. Accessed 7 Oct 2015.
  25. 25.
    Khan, M. U. K., Shafique, M., & Henkel, J. CES Free Software – EnAAM, Chair for Embedded Systems (CES), KIT, [Online]. Available: ces.itec.kit.edu/EnAAM/. Accessed 5 Oct 2015.Google Scholar
  26. 26.
    Joint Collaborative Team on Video Coding (JCT-VC), ITU, [Online]. Available: http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx. Accessed 7 Oct 2015.
  27. 27.
    Video Library and Tools – NSL. Network Systems Lab, [Online]. Available: https://cs-nsl-wiki.cs.surrey.sfu.ca/wiki/Video_Library_and_Tools. Accessed 7 Oct 2015.
  28. 28.
    Amrouch, H., Ebi, T., & Henkel, J. (2013). Stress balancing to mitigate NBTI Effects in register files. In Dependable Systems and Networks (DSN).Google Scholar
  29. 29.
    Shin, J., Zyuban, V., Bose, P., & Pinkston, T. (2008). A proactive wearout recovery approach for exploiting microarchi-tectural redundancy to extend cache SRAM lifetime. In International Symposium on Computer Architecture (ISCA).Google Scholar
  30. 30.
    Siddiqua, T., & Gurumurthi, S. (2010). Recovery boosting: A technique to enhance NBTI recovery in SRAM arrays. In Annual Symposium on VLSI.Google Scholar
  31. 31.
    Sil, A., Ghosh, S., Gogineni, N., & Bayoumi, M. (2008). A novel high write speed, low power, read-SNM-Free 6T SRAM cell. In Midwest Symposium on Circuits and Systems.Google Scholar
  32. 32.
    Wang, S., Jin, T., Zheng, C., & Duan, G. (2012). Low power aging-aware register file design by duty cycle balancing. In Design, Automation and Test in Europe (DATE).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Muhammad Usman Karim Khan
    • 1
  • Muhammad Shafique
    • 2
  • Jörg Henkel
    • 3
  1. 1.IBM Deutschland Research & Development GmbHBöblingenGermany
  2. 2.Institute of Computer EngineeringVienna University of TechnologyViennaAustria
  3. 3.Department of Computer ScienceKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations