Advertisement

Energy-Efficient Hardware Design for Video Systems

  • Muhammad Usman Karim Khan
  • Muhammad Shafique
  • Jörg Henkel
Chapter

Abstract

The techniques based in the software layer for computation- and power-efficient video processing system given in Chap. 4 do not necessitate any custom hardware. However, custom hardware architectures for video processing systems are in wide use because they produce higher throughput and have higher complexity and power reduction potential compared to the software-only solutions. This chapter outlines some of the hardware architectural enhancements and custom accelerators for highly efficient video processing systems. Efficient I/O and internode communication s for video processing system are discussed. Hardware architectures of the complete system and accelerator s are also given, specifically pertaining to H.264/AVC and HEVC encoders. Furthermore, the hardware accelerator allocation or workload administration (whereby the accelerator provides its services to multiple nodes) is also discussed, which can be useful in shared hardware accelerator paradigms. Targeting the memory subsystem, power-efficient hybrid memory architectures and SRAM aging mitigation are also presented.

References

  1. 1.
    Altera. External memory interface handbook. June 2011. [Online]. Available: http://www.altera.com/literature/hb/external-memory/emi.pdf. Accessed 29 Sept 2015.
  2. 2.
    Juice Encoder– 4 in 1 MPEG-4 AVC/H.264 HD encoder. Antik Technology, [Online]. Available: http://www.antiktech.com/iptv-products/juice-encoder-EN-5004-5008/
  3. 3.
    Marvell 88DE3100 High-Definition Secure Media Processor System-on-Chip (SoC). [Online]. Available: http://www.marvell.com/digital-entertainment/armada-1500/assets/Marvell-ARMADA-1500-Product-Brief.pdf/
  4. 4.
    Cuomo, S., Michele, P. D., & Piccialli, F. (2014). 3D data denoising via nonlocal means filter by using parallel GPU strategies. In Computational and Mathematical Methods in Medicine.Google Scholar
  5. 5.
    Shafique, M., Zatt, B., Walter, F. L., Bampi, S., & Henkel, J. (2012). Adaptive power management of on-chip video memory for multiview video coding. In Design Automation Conference.Google Scholar
  6. 6.
    Sze, V., Finchelstein, D. F., Sinangil, M. E., & Chandraksan, A. P. (2009). A 0.7-V 1.8-mW H.264/AVC 720p video decoder. IEEE Journal of Solid-Sate Circuits, 44(11), 2943–2956.CrossRefGoogle Scholar
  7. 7.
    Ma, Z., & Segall, A. (2011). Frame buffer compression for low-power video coding. In International Conference on Image Processing.Google Scholar
  8. 8.
    Ning, K., & Kaeli, D. (2005). Power aware external bus arbitration for system-on-a-chip embedded systems. High Performance Embedded Architectures and Compilers, 3793, 87–101.CrossRefGoogle Scholar
  9. 9.
    Nios II Custom Instruction User Guide. Altera, (2011).Google Scholar
  10. 10.
    Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4).Google Scholar
  11. 11.
    Snyman, J., Stander, N., & Roux, W. (1994). A dynamic penalty function method for the solution of structural optimization problems. Applied Mathematical Modelling, 18(8), 453–460.CrossRefzbMATHGoogle Scholar
  12. 12.
    Carlson, T., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In High Performance Computing, Networking, Storage and Analysis.Google Scholar
  13. 13.
    Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Microarchitecture.Google Scholar
  14. 14.
    Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., & Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity. IEEE Circuits and Systems Magazine, 4(1), 7–28.CrossRefGoogle Scholar
  15. 15.
    Tsai, C. H., Tang, C. S., & Chen, L. G. (2012). A flexible, fully hardwired CABAC encoder for UHDTV H.264/AVC high profile video. IEEE Transactions on Consumer Electronics, 58(4), 1329–1337.CrossRefGoogle Scholar
  16. 16.
    Shafique, M., Bauer, L., & Henkel, J. (2010). Optimizing the H.264/AVC video encoder application structure for reconfigurable and application-specific platforms. Journal of Signal Processing Systems (JSPS), 60(2), 183–210.CrossRefGoogle Scholar
  17. 17.
    Malvar, H., Hallapuro, A., Karczewicz, M., & Kerofsky, L. (2003). Low-complexity transform and quantization in H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 598–603.CrossRefGoogle Scholar
  18. 18.
    Wang, J.-C., Wang, J.-F., Yang, J.-F., & Chen, J.-T. (2007). A fast mode decision algorithm and its VLSI design for H.264/AVC intra-prediction. IEEE Transactions on Circuits and Systems for Video Technology, 17(10), 1414–1422.CrossRefGoogle Scholar
  19. 19.
    Pan, F., Lin, X., Rahardja, S., Lim, K. P., Li, Z. G., Wu, D., & Wu, S. (2005). Fast mode decision algorithm for intraprediction in H.264/AVC video coding. IEEE Transactions on Circuits and Systems for Video Technology, 15(7), 813–822.CrossRefGoogle Scholar
  20. 20.
    Kuo, H. C., Wu, L. C., Huang, H. T., Hsu, S. T., & Lin, Y. L. (2011). A low-power high-performance H.264/AVC intra-frame encoder for 1080pHD video. IEEE Transactions on Very Large Scale Integrated Systems (TVLSI), 19(6), 925–938.CrossRefGoogle Scholar
  21. 21.
    Taiwan Semiconductor Manufacturing Company Limited. TSMC, [Online]. Available: http://www.tsmc.com/. Accessed 7 Oct 2015.
  22. 22.
    Altera. Nios II Process Reference Handbook. [Online]. Available: https://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf. Accessed 08 June 2015.
  23. 23.
    Fonseca, T. A., Liu, Y., & Queiroz, R. L. D. (2007). Open-loop prediction in H.264 / AVC for high definition sequences. In SBrT.Google Scholar
  24. 24.
    ModelSim – Leading Simulation and Debugging. Mentor Graphics, [Online]. Available: http://www.mentor.com/products/fpga/model/. Accessed 7 Oct 2015.
  25. 25.
    Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Muhammad Usman Karim Khan
    • 1
  • Muhammad Shafique
    • 2
  • Jörg Henkel
    • 3
  1. 1.IBM Deutschland Research & Development GmbHBöblingenGermany
  2. 2.Institute of Computer EngineeringVienna University of TechnologyViennaAustria
  3. 3.Department of Computer ScienceKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations