Advertisement

Power-Efficient Video System Design

  • Muhammad Usman Karim Khan
  • Muhammad Shafique
  • Jörg Henkel
Chapter

Abstract

This chapter provides an overview of designing a video system to meet the challenges outlined in Chap.  2. Details are given about the architectural aspects, and the complexity and power control knobs of the system. By examining these knobs, motivational analysis is carried out which forms the foundation of the algorithmic- and architectural-design decisions presented in this book.

References

  1. 1.
    Ma, K., Li, X., Chen, M., & Wang, X. (2011). Scalable power control for many-core architectures running multi-threaded applications. In Internation Symposium on Computer Architecture.Google Scholar
  2. 2.
    Sharifi, A., Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2012). PEPON: Performance-aware hierarchical power budgeting for NoC based multicores. In Parallel Architectures and Compilation Techniques.Google Scholar
  3. 3.
    Jevtic, R., Le, H.-P., Blagojevic, M., Bailey, S., Asanovic, K., Alon, E., & Nikolic, B. (2015). Per-core DVFS with switched-capacitor converters for energy efficiency in manycore processors. IEEE Transactions on Very Large Sclae Integration Systems (TVLSI), 23(4), 723–730.CrossRefGoogle Scholar
  4. 4.
    Kim, W., Gupta, M., Wei, G.-Y., & Brooks, D. (2008). System level analysis of fast, per-core DVFS using on-chip switching regulators. In International Symposium on High Performance Computer Architecture (HPCA).Google Scholar
  5. 5.
    Lee, W., Wang, Y., & Pedram, M. (2014). VRCon: Dynamic reconfiguration of voltage regulators in a multicore platform. In Design, Automation & Test in Europe and Exhibition (DATE).Google Scholar
  6. 6.
    libdvfs. [Online]. Available: https://github.com/LittleWhite-tb/libdvfs. Accessed 12 Aug 2015.
  7. 7.
    Nios II Custom Instruction User Guide. Altera, (2011).Google Scholar
  8. 8.
    OMAP 3 Processor. Texas instruments, [Online]. Available: http://www.ti.com/product/omap3530. Accessed 13 Aug 2015.
  9. 9.
    Feitelson, D. G., & Rudolph, L. (1996). Towards convergence in job schedulers for parallel supercomputers. In Workshop on Job Scheduling Strategies for Parallel Processing.Google Scholar
  10. 10.
    Desell, T., Maghraoui, K. E., & Varela, C. A. (2007). Malleable applications for scalable high performance computing. Cluster Computing, 10(3), 323–337.CrossRefGoogle Scholar
  11. 11.
    OpenMP. [Online]. Available: http://openmp.org/wp/. Accessed 12 Aug 2015.
  12. 12.
    Chi, C. C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., & Schierl, T. (2012). Parallel scalability and efficiency of HEVC parallelization approaches. IEEE Transactions on Circuits and Systems on Video Technology, 22(12), 1827–1838.CrossRefGoogle Scholar
  13. 13.
    Kuhn, K., Kenyon, C., Kornfeld, A., Liu, M., Maheshwari, A., Shih, W.-k., Sivakumar, S., Taylor, G., VanDerVoorn, P., & Zawadzki, K. (2008). Managing process variation in intel’s 45nm CMOS technology. Intel Technology Journal, 12(2), 93–109.Google Scholar
  14. 14.
    Nguyen, T., & Marpe, D. (2012). Performance analysis of HEVC-based intra coding for still image compression. In Picture Coding Symposium (PCS).Google Scholar
  15. 15.
    Shafique, M., Molkenthin, B., & Henkel, J. (2010). An HVS-based adaptive computational complexity reduction scheme for H.264/AVC video encoder using prognostic early mode exclusion. In Design, Automation and Test in Europe Conference (DATE).Google Scholar
  16. 16.
    Jiang, W., Mal, H., & Chen, Y. (2012). Gradient based fast mode decision algorithm for intra prediction in HEVC. In International Conference on Consumer Electronics, Communications and Networks.Google Scholar
  17. 17.
    Carlson, T., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In High Performance Computing, Networking, Storage and Analysis.Google Scholar
  18. 18.
    Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Microarchitecture.Google Scholar
  19. 19.
    Barroso, L., & Holzle, U. (2007). The case for energy-proportional computing. Computer, 40(12), 33–37.CrossRefGoogle Scholar
  20. 20.
    Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., & Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity. IEEE Circuits and Systems Magazine, 4(1), 7–28.CrossRefGoogle Scholar
  21. 21.
    Sullivan, G. J., Ohm, J., Han, W., & Wiegand, T. (2012). Overview of the high efficiency video coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.CrossRefGoogle Scholar
  22. 22.
    Shafique, M., Zatt, B., Walter, F. L., Bampi, S., & Henkel, J. (2012). Adaptive power management of on-chip video memory for mul-tiview video coding. In Design Automation Conference.Google Scholar
  23. 23.
    Stancu, L. C., Bathen, L. A. D., Dutt, N., & Nicolau, A. (2012). AVid : Annotation driven video decoding for hybrid memories. In Embedded Systems for Real-Time Multimedia.Google Scholar
  24. 24.
    Bathen, L., & Dutt, N. (2012). HaVOC: A hybrid memory-aware virtualization layer for on-chip distributed scratchpad and non-volatile memories. In Design Automation Conference.Google Scholar
  25. 25.
    Chen, C., Huang, C., Chen, Y., & Chen, L. (2006). Level C+ data reuse scheme for motion estimation with corresponding coding orders. IEEE Transactions on Circuits and Systems for Video Technology, 16(4), 553–558.CrossRefGoogle Scholar
  26. 26.
    Gangadharan, D., Phan, L., Chakraborty, S., Zimmer-mann, R., & Insup, L. (2011). Video quality driven buffer sizing via frame drops. In Embedded and Real-Time Computing Systems and Applications (RTCSA).Google Scholar
  27. 27.
    Tsung, P.-K., Chen, W.-Y., Ding, L.-F., Chien, S.-Y., & Chen, L.-G. (2009). Cache-based integer motion / disparity estimation for Quad-HD H.264/AVC and HD multiview video coding. In International Conference on Acoustics, Speech and Signal Processing (ICASSP).Google Scholar
  28. 28.
    Ning, K., & Kaeli, D. (2005). Power aware external bus arbitration for system-on-a-chip embedded systems. High Performance Embedded Architectures and Compilers, 3793, 87–101.CrossRefGoogle Scholar
  29. 29.
    Sze, V., Finchelstein, D. F., Sinangil, M. E., & Chandraksan, A. P. (2009). A 0.7-V 1.8-mW H.264/AVC 720p video decoder. IEEE Journal of Solid-Sate Circuits, 44(11), 2943–2956.CrossRefGoogle Scholar
  30. 30.
    Ma, Z., & Segall, A. (2011). Frame buffer compression for low-power video coding. In International Conference on Image Processing.Google Scholar
  31. 31.
    Purnachand, N., Alves, L. N., & Navarro, A. (2012). Improvements to TZ search motion estimation algorithm for multiview video cod-ing. In IEEE International Confernce on Systems, Signals and Image Processing (IWSSIP), pp. 388–391.Google Scholar
  32. 32.
    Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., & Xie, Y. (2009). Hybrid cache architecture with disparate memory technologies. In International Symposium on Computer Architecture (ISCA).Google Scholar
  33. 33.
    Loh, G. H. (2009). Extending the effectiveness of 3D-stacked DRAM caches with an adaptive multi-queue policy. In International Symposium on Microarchitecture (MICRO).Google Scholar
  34. 34.
    Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., & Chen, Y. (2008). Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In Design Automation Conference (DAC).Google Scholar
  35. 35.
    Bossen, F. (2012). Common test conditions. Joint Collaborative Team on Video Coding (JCT-VC) Doc. I1100.Google Scholar
  36. 36.
    Common YUV 4:2:0 test sequences. [Online]. Available: https://media.xiph.org/video/derf. Accessed 16 Aug 2015.
  37. 37.
    Siddiqua, T., & Gurumurthi, S. (2010). Recovery boosting: A technique to enhance NBTI recovery in SRAM arrays. In Annual Symposium on VLSI.Google Scholar
  38. 38.
    Amrouch, H., Ebi, T., & Henkel, J. (2013). Stress balancing to mitigate NBTI Effects in register files. In Dependable Systems and Networks (DSN).Google Scholar
  39. 39.
    Kothawade, S., Chakraborty, K., & Roy, S. (2011). Analysis and mitigation of NBTI aging in register file: An end-to-end approach. In International Symposium on Quality Electronic Design (ISQED).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Muhammad Usman Karim Khan
    • 1
  • Muhammad Shafique
    • 2
  • Jörg Henkel
    • 3
  1. 1.IBM Deutschland Research & Development GmbHBöblingenGermany
  2. 2.Institute of Computer EngineeringVienna University of TechnologyViennaAustria
  3. 3.Department of Computer ScienceKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations