Skip to main content

Inherited Neutropenias and Their Insights into Cellular and Developmental Biology

  • Chapter
  • First Online:

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Isolated neutropenia may be either congenital or acquired. Congenital neutropenias result from single gene mutations, where the genes encode a diverse range of proteins involved in granulocytic progenitor expansion, survival, differentiation, cytoskeletal organization, and metabolism. Congenital neutropenias may be associated with non-hematologic abnormalities. While recombinant human granulocyte colony-stimulating factor can improve neutrophil counts, its usage may be associated with mutations in its cognate receptor and herald the transformation to myelodysplastic syndrome or acute myeloid leukemia. Besides serving as a model for understanding bone marrow failure and transformation to myeloid malignancy, these monogenic disorders provide insight into normal cellular and developmental biology of neutrophils and granulopoiesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ancliff PJ, Blundell MP, Cory GO et al (2006) Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood 108(7):2182–2189

    Article  CAS  Google Scholar 

  • Arinobu Y, Mizuno S, Chong Y et al (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1(4):416–427

    Article  CAS  Google Scholar 

  • Awaya N, Uchida H, Miyakawa Y et al (2002) Novel variant isoform of G-CSF receptor involved in induction of proliferation of FDCP-2 cells: relevance to the pathogenesis of myelodysplastic syndrome. J Cell Physiol 191(3):327–335

    Article  CAS  Google Scholar 

  • Bashey A, Healy L, Marshall CJ (1994) Proliferative but not nonproliferative responses to granulocyte colony-stimulating factor are associated with rapid activation of the p21ras/MAP kinase signalling pathway. Blood 83(4):949–957

    PubMed  CAS  Google Scholar 

  • Beekman R, Valkhof MG, Sanders MA et al (2012) Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood 119(22):5071–5077

    Article  CAS  Google Scholar 

  • Beekman R, Valkhof M, van Strien P et al (2013) Prevalence of a new auto-activating colony stimulating factor 3 receptor mutation (CSF3R-T595I) in acute myeloid leukemia and severe congenital neutropenia. Haematologica 98(5):e62–e63

    Article  Google Scholar 

  • Beel K, Cotter MM, Blatny J et al (2009) A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene. Br J Haematol 144(1):120–126

    Article  Google Scholar 

  • Boztug K, Appaswamy G, Ashikov A et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360(1):32–43

    Article  CAS  Google Scholar 

  • Boztug K, Jarvinen PM, Salzer E et al (2014) JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia. Nat Genet 46(9):1021–1027

    Article  CAS  Google Scholar 

  • Brush MH, Weiser DC, Shenolikar S (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23(4):1292–1303

    Article  CAS  Google Scholar 

  • Carlsson G, van’t Hooft I, Melin M et al (2008) Central nervous system involvement in severe congenital neutropenia: neurological and neuropsychological abnormalities associated with specific HAX1 mutations. J Intern Med 264(4):388–400

    Article  CAS  Google Scholar 

  • Carlsson G, Fasth A, Berglof E et al (2012) Incidence of severe congenital neutropenia in Sweden and risk of evolution to myelodysplastic syndrome/leukaemia. Br J Haematol 158(3):363–369

    Article  Google Scholar 

  • Chao JR, Parganas E, Boyd K et al (2008) Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452(7183):98–102

    Article  CAS  Google Scholar 

  • Corey SJ, Burkhardt AL, Bolen JB et al (1994) Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc Natl Acad Sci U S A 91(11):4683–4687

    Article  CAS  Google Scholar 

  • Corey SJ, Dombrosky-Ferlan PM, Zuo S et al (1998) Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor. J Biol Chem 273(6):3230–3235

    Article  CAS  Google Scholar 

  • Dahl R, Walsh JC, Lancki D et al (2003) Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBP[alpha] ratio and granulocyte colony-stimulating factor. Nat Immunol 4(10):1029–1036

    Article  CAS  Google Scholar 

  • Dale DC, Person RE, Bolyard AA et al (2000) Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96(7):2317–2322

    PubMed  CAS  Google Scholar 

  • Denic S, Narchi H, Al Mekaini LA et al (2016) Prevalence of neutropenia in children by nationality. BMC Hematol 16:15

    Article  CAS  Google Scholar 

  • Devriendt K, Kim AS, Mathijs G et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27(3):313–317

    Article  CAS  Google Scholar 

  • Donadieu J, Leblanc T, Bader Meunier B et al (2005) Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90(1):45–53

    PubMed  Google Scholar 

  • Dong F, Hoefsloot LH, Schelen AM et al (1994) Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia. Proc Natl Acad Sci U S A 91(10):4480–4484

    Article  CAS  Google Scholar 

  • Dong F, van Paassen M, van Buitenen C et al (1995a) A point mutation in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene in a case of acute myeloid leukemia results in the overexpression of a novel G-CSF-R isoform. Blood 85(4):902–911

    PubMed  CAS  Google Scholar 

  • Dong F, Brynes RK, Tidow N et al (1995b) Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333(8):487–493

    Article  CAS  Google Scholar 

  • Druhan LJ, Ai J, Massullo P et al (2005) Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. Blood 105(2):584–591

    Article  CAS  Google Scholar 

  • Ehlers S, Herbst C, Zimmermann M et al (2010) Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J Clin Oncol 28(15):2591–2597

    Article  CAS  Google Scholar 

  • Friedman AD (2002) Transcriptional regulation of granulocyte and monocyte development. Oncogene 21(21):3377–3390

    Article  CAS  Google Scholar 

  • Fukunaga R, Ishizaka-Ikeda E, Nagata S (1993) Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74(6):1079–1087

    Article  CAS  Google Scholar 

  • Gautam S, Kirschnek S, Gentle IE et al (2013) Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-beta (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation. Cell Death Differ 20(8):1068–1079

    Article  CAS  Google Scholar 

  • Germeshausen M, Grudzien M, Zeidler C et al (2008) Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood 111(10):4954–4957

    Article  CAS  Google Scholar 

  • Germeshausen M, Deerberg S, Peter Y et al (2013) The spectrum of ELANE mutations and their implications in severe congenital and cyclic neutropenia. Hum Mutat 34(6):905–914

    Article  CAS  Google Scholar 

  • Grishin A, Sinha S, Roginskaya V et al (2000) Involvement of Shc and Cbl-PI 3-kinase in Lyn-dependent proliferative signaling pathways for G-CSF. Oncogene 19(1):97–105

    Article  CAS  Google Scholar 

  • Han J, Back SH, Hur J et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490

    Article  CAS  Google Scholar 

  • Hernandez PA, Gorlin RJ, Lukens JN et al (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34(1):70–74

    Article  CAS  Google Scholar 

  • Horwitz M, Benson KF, Person RE et al (1999) Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23(4):433–436

    Article  CAS  Google Scholar 

  • Horwitz MS, Duan Z, Korkmaz B et al (2007) Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 109(5):1817–1824

    Article  CAS  Google Scholar 

  • Hunter MG, Jacob A, O’Donnell LC et al (2004) Loss of SHIP and CIS recruitment to the granulocyte colony-stimulating factor receptor contribute to hyperproliferative responses in severe congenital neutropenia/acute myelogenous leukemia. J Immunol 173(8):5036–5045

    Article  CAS  Google Scholar 

  • Klein C, Grudzien M, Appaswamy G et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39(1):86–92

    Article  CAS  Google Scholar 

  • Kojima E, Takeuchi A, Haneda M et al (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17(11):1573–1575

    Article  CAS  Google Scholar 

  • Kuroki M, O’Flaherty JT (1999) Extracellular signal-regulated protein kinase (ERK)-dependent and ERK-independent pathways target STAT3 on serine-727 in human neutrophils stimulated by chemotactic factors and cytokines. Biochem J 341(Pt 3):691–696

    Article  CAS  Google Scholar 

  • Laslo P, Spooner CJ, Warmflash A et al (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126(4):755–766

    Article  CAS  Google Scholar 

  • Laslo P, Pongubala JM, Lancki DW et al (2008) Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Semin Immunol 20(4):228–235

    Article  CAS  Google Scholar 

  • Lyman GH, Dale DC, Wolff DA et al (2010) Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol 28(17):2914–2924

    Article  Google Scholar 

  • Marciniak SJ, Yun CY, Oyadomari S et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18(24):3066–3077

    Article  CAS  Google Scholar 

  • Maxson JE, Gottlib J, Pollyea DA et al (2013) Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med 368:1781–1790

    Article  CAS  Google Scholar 

  • McDermott DH, De Ravin SS, Jun HS et al (2010) Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood 116(15):2793–2802

    Article  CAS  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL et al (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15(20):5647–5658

    Article  CAS  Google Scholar 

  • Mehta HM, Glaubach T, Long A et al (2013) Granulocyte colony stimulating factor mutant receptor T595I (T618I) confers ligand independence and enhanced signaling. Leukemia 27(12):2407–2410

    Article  CAS  Google Scholar 

  • Mehta HM, Futami M, Glaubach T et al (2014) Alternatively spliced, truncated GCSF receptor promotes leukemogenic properties and sensitivity to JAK inhibition. Leukemia 28:1041–1051

    Article  CAS  Google Scholar 

  • Mehta HM, Malandra M, Corey SJ (2015) G-CSF and GM-CSF in neutropenia. J Immunol 195(4):1341–1349

    Article  CAS  Google Scholar 

  • Moulding DA, Blundell MP, Spiller DG et al (2007) Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med 204(9):2213–2224

    Article  CAS  Google Scholar 

  • Nanua S, Murakami M, Xia J et al (2011) Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane. Blood 117(13):3539–3547

    Article  CAS  Google Scholar 

  • Nicholson SE, Oates AC, Harpur AG et al (1994) Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc Natl Acad Sci U S A 91(8):2985–2988

    Article  CAS  Google Scholar 

  • Nicholson SE, Novak U, Ziegler SF et al (1995) Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44MAPK. Blood 86(10):3698–3704

    PubMed  CAS  Google Scholar 

  • Nicholson SE, Starr R, Novak U et al (1996) Tyrosine residues in the granulocyte colony-stimulating factor (G-CSF) receptor mediate G-CSF-induced differentiation of murine myeloid leukemic (M1) cells. J Biol Chem 271(43):26947–26953

    Article  CAS  Google Scholar 

  • Orkin SH, Shivdasani RA, Fujiwara Y et al (1998) Transcription factor GATA-1 in megakaryocyte development. Stem Cells 16(Suppl 2):79–83

    PubMed  Google Scholar 

  • Pardanani A, Lasho TL, Laborde RR et al (2013) CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilc leukemia. Leukemia 27(9):1870–1873

    Article  CAS  Google Scholar 

  • Person RE, Li FQ, Duan Z et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34(3):308–312

    Article  CAS  Google Scholar 

  • Pillay J, den Braber I, Vrisekoop N et al (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116(4):625–627

    Article  CAS  Google Scholar 

  • Reich D, Nalls MA, Kao WH et al (2009) Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet 5(1):e1000360

    Article  CAS  Google Scholar 

  • Rezaei N, Chavoshzadeh Z, O RA et al (2007) Association of HAX1 deficiency with neurological disorder. Neuropediatrics 38(5):261–263

    Article  CAS  Google Scholar 

  • Rosenberg PS, Alter BP, Bolyard AA et al (2006) The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107(12):4628–4635

    Article  CAS  Google Scholar 

  • Scott EW, Simon MC, Anastasi J et al (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265(5178):1573–1577

    Article  CAS  Google Scholar 

  • Semerad CL, Poursine-Laurent J, Liu F et al (1999) A role for G-CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation. Immunity 11(2):153–161

    Article  CAS  Google Scholar 

  • Seymour JF, Lieschke GJ, Grail D et al (1997) Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 90(8):3037–3049

    PubMed  CAS  Google Scholar 

  • Sinha S, Zhu QS, Romero G et al (2003) Deletional mutation of the external domain of the human granulocyte colony-stimulating factor receptor in a patient with severe chronic neutropenia refractory to granulocyte colony-stimulating factor. J Pediatr Hematol Oncol 25(10):791–796

    Article  Google Scholar 

  • Skokowa J, Steinemann D, Katsman-Kuipers JE et al (2014) Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123(14):2229–2237

    Article  CAS  Google Scholar 

  • Sloand EM, Mainwaring LA, Chen G et al (2003) Granulocyte-colony stimulating factor preferentially stimulates proliferation of monosomy 7 cells but does not foster development of this abnormality in cells with normal karyotype. Blood 102:Abstract 3395

    Google Scholar 

  • Sloand EM, Yong AS, Ramkissoon S et al (2006) Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor. Proc Natl Acad Sci U S A 103(39):14483–14488

    Article  CAS  Google Scholar 

  • Smith RE, Bryant J, DeCillis A et al (2003) Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol 21(7):1195–1204

    Article  CAS  Google Scholar 

  • Socie G, Mary JY, Schrezenmeier H et al (2007) Granulocyte-stimulating factor and severe aplastic anemia: a survey by the European Group for Blood and Marrow Transplantation (EBMT). Blood 109(7):2794–2796

    PubMed  CAS  Google Scholar 

  • Spooner CJ, Cheng JX, Pujadas E et al (2009) A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity 31(4):576–586

    Article  CAS  Google Scholar 

  • Suzuki Y, Demoliere C, Kitamura D et al (1997) HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol 158(6):2736–2744

    PubMed  CAS  Google Scholar 

  • Thrasher AJ (2002) WASp in immune-system organization and function. Nat Rev Immunol 2(9):635–646

    Article  CAS  Google Scholar 

  • Tian SS, Lamb P, Seidel HM et al (1994) Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 84(6):1760–1764

    PubMed  CAS  Google Scholar 

  • Tidwell T, Wechsler J, Nayak RC et al (2014) Neutropenia-associated ELANE mutations disrupting translation initiation produce novel neutrophil elastase isoforms. Blood 123(4):562–569

    Article  CAS  Google Scholar 

  • Traver D, Miyamoto T, Christensen J et al (2001) Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood 98(3):627–635

    Article  CAS  Google Scholar 

  • Triot A, Jarvinen PM, Arostegui JI et al (2014) Inherited biallelic CSF3R mutations in severe congenital neutropenia. Blood 123(24):3811–3817

    Article  CAS  Google Scholar 

  • Vafiadaki E, Arvanitis DA, Pagakis SN et al (2009) The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell 20(1):306–318

    Article  CAS  Google Scholar 

  • Wang L, Rudert WA, Loutaev I et al (2002) Repression of c-Cbl leads to enhanced G-CSF Jak-STAT signaling without increased cell proliferation. Oncogene 21(34):5346–5355

    Article  CAS  Google Scholar 

  • Ward AC, van Aesch YM, Schelen AM et al (1999a) Defective internalization and sustained activation of truncated granulocyte colony-stimulating factor receptor found in severe congenital neutropenia/acute myeloid leukemia. Blood 93(2):447–458

    PubMed  CAS  Google Scholar 

  • Ward AC, van Aesch YM, Gits J et al (1999b) Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment. J Exp Med 190(4):497–507

    Article  CAS  Google Scholar 

  • White SM, Alarcon MH, Tweardy DJ (2000) Inhibition of granulocyte colony-stimulating factor-mediated myeloid maturation by low level expression of the differentiation-defective class IV granulocyte colony-stimulating factor receptor isoform. Blood 95(11):3335–3340

    PubMed  CAS  Google Scholar 

  • Zarebski A, Velu CS, Baktula AM et al (2008) Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 28(3):370–380

    Article  CAS  Google Scholar 

  • Zhang P, Zhang X, Iwama A et al (2000) PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96(8):2641–2648

    PubMed  CAS  Google Scholar 

  • Zhu QS, Robinson LJ, Roginskaya V et al (2004) G-CSF-induced tyrosine phosphorylation of Gab2 is Lyn kinase dependent and associated with enhanced Akt and differentiative, not proliferative, responses. Blood 103(9):3305–3312

    Article  CAS  Google Scholar 

  • Zhu QS, Xia L, Mills GB et al (2006) G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107(5):1847–1856

    Article  CAS  Google Scholar 

  • Ziegler SF, Bird TA, Morella KK et al (1993) Distinct regions of the human granulocyte-colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Mol Cell Biol 13(4):2384–2390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth J. Corey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, H.M., Corey, S.J. (2018). Inherited Neutropenias and Their Insights into Cellular and Developmental Biology. In: Kupfer, G., Reaman, G., Smith, F. (eds) Bone Marrow Failure. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-61421-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61421-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61420-5

  • Online ISBN: 978-3-319-61421-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics