Skip to main content

Cancer Metabolism

  • Chapter
  • First Online:
Book cover Imaging and Metabolism
  • 1190 Accesses

Abstract

Altered cellular metabolism is one of the hallmarks of cancers. Otto Warburg, a German biochemist, observed that cancer cells take up and metabolized large amounts of glucose and ferment it to lactate even in the presence of oxygen. This unexpected observation that cancer cells convert glucose to lactate even in aerobic conditions led Warburg to hypothesize that cancer cells have defective mitochondria. We now know that mitochondria are not defective in cancer cells but that this process, called the Warburg effect, represents a form of metabolic adaptation in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  CAS  Google Scholar 

  4. Baumann F, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro-Oncology. 2009;11:368–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Colen CB, et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13:620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crane CA, et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc Natl Acad Sci U S A. 2014;111:12823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marin-Valencia I, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15:827–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hensley CT, et al. Metabolic heterogeneity in human lung tumors. Cell. 2016;164:681–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolf A, Agnihotri S, Munoz D, Guha A. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis. 2011;44:84–91.

    Article  CAS  PubMed  Google Scholar 

  10. Patra KC, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24:213–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL. Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res. 1996;56:2468–71.

    CAS  PubMed  Google Scholar 

  12. Wolf A, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palmieri D, et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res. 2009;7:1438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelloff GJ. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11:2785–808.

    Article  CAS  PubMed  Google Scholar 

  15. Wong N, Ojo D, Yan J, Tang D. PKM2 contributes to cancer metabolism. Cancer Lett. 2015;356:184–91.

    Article  CAS  PubMed  Google Scholar 

  16. Noguchi T, Inoue H, Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986;261:13807–12.

    CAS  PubMed  Google Scholar 

  17. Israelsen WJ, Vander Heiden MG. Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol. 2015;43:43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor CB, Bailey E. Activation of liver pyruvate kinase by fructose 1,6-diphosphate. Biochem J. 1967; 102:32c–33c.

    Google Scholar 

  19. Chaneton B, et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature. 2012;491:458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Israelsen WJ, et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. 2013;155:397–409.

    Article  CAS  PubMed  Google Scholar 

  21. Lunt SY, et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell. 2015;57:95–107.

    Article  CAS  PubMed  Google Scholar 

  22. Commisso C, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–24.

    Article  CAS  PubMed  Google Scholar 

  24. Vander Heiden MG, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 2011;76:325–34.

    Article  CAS  PubMed  Google Scholar 

  25. DeBerardinis RJ, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104:19345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 2012.

    Google Scholar 

  28. Venneti S. et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015; 7:274ra17.

    Google Scholar 

  29. DeNicola GM, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 2015;47:1475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schirch V, Szebenyi DM. Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol. 2005;9:482–7.

    Article  CAS  PubMed  Google Scholar 

  32. Pai YJ, et al. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat Commun. 2015;6:6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39:191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang J, et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science. 2009;325:435–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lane AN, Fan TW-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015.

    Google Scholar 

  36. Zatz M, Dudley PA, Kloog Y, Markey SP. Nonpolar lipid methylation. Biosynthesis of fatty acid methyl esters by rat lung membranes using S-adenosylmethionine. J Biol Chem. 1981;256:10028–32.

    CAS  PubMed  Google Scholar 

  37. Hickman MJ, et al. Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Mol Biol Cell. 2011;22:4192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan J, et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510:298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang W, et al. PKM2 phosphorylates histone H3 and promotes Gene transcription and tumorigenesis. Cell. 2012;150:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012;148:24–8.

    Article  CAS  PubMed  Google Scholar 

  41. Teperino R, Schoonjans K, Auwerx J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab. 2010;12:321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Snell K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzym Regul. 1984;22:325–400.

    Article  CAS  Google Scholar 

  43. Locasale JW, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43:869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Possemato R, et al. Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer. Nature. 2011;476:346–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Christofk HR, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–3.

    Article  CAS  PubMed  Google Scholar 

  46. Jain M, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336:1040–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang WC, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.

    Article  CAS  PubMed  Google Scholar 

  48. Rahman L, et al. Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell. 2004;5:341–51.

    Article  CAS  PubMed  Google Scholar 

  49. Xu X, et al. Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res. 2008;68:2652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bester AC, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 2011;145:435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brennan CW, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996;271:31372–8.

    Article  CAS  PubMed  Google Scholar 

  53. Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272:17269–75.

    Article  CAS  PubMed  Google Scholar 

  54. Gottlob K, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15:1406–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosario FJ, Kanai Y, Powell TL, Jansson T. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol. 2013;591:609–25.

    Article  CAS  PubMed  Google Scholar 

  56. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.

    Article  PubMed  CAS  Google Scholar 

  58. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125:25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Babic I, et al. EGFR mutation-induced alternative splicing of max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 2013;17:1000–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Csibi A, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153:840–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.

    Article  CAS  PubMed  Google Scholar 

  62. Huh TL, Kim YO, Oh IU. Song, B.J. & Inazawa, J. Assignment of the human mitochondrial NAD+ −specific isocitrate dehydrogenase alpha subunit (IDH3A) gene to 15q25.1-->q25.2by in situ hybridization. Genomics. 1996;32:295–6.

    Article  CAS  PubMed  Google Scholar 

  63. Losman J-A, et al. (R)-2-Hydroxyglutarate is sufficient to promote Leukemogenesis and its effects are reversible. Science. 2013;339:1621–5.

    Article  CAS  PubMed  Google Scholar 

  64. Soundar S, Park JH, Huh TL, Colman RF. Evaluation by mutagenesis of the importance of 3 arginines in alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase. J Biol Chem. 2003;278:52146–53.

    Article  CAS  PubMed  Google Scholar 

  65. Cohen PF, Colman RF. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Characterization of the active substrate and modes of regulation. Biochemistry. 1972;11:1501–8.

    Article  CAS  PubMed  Google Scholar 

  66. Denton RM, Richards DA, Chin JG. Calcium ions and the regulation of NAD+−linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J. 1978;176:899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shechter I, Dai P, Huo L, Guan G. IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: evidence that IDH1 may regulate lipogenesis in hepatic cells. J Lipid Res. 2003;44:2169–80.

    Article  CAS  PubMed  Google Scholar 

  68. Liu W, Capuco AV, Romagnolo DF. Expression of cytosolic NADP+−dependent Isocitrate dehydrogenase in bovine mammary epithelium: modulation by regulators of differentiation and metabolic effectors. Exp Biol Med. 2006;231:599–610.

    Article  CAS  Google Scholar 

  69. Jo SH, et al. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun. 2002;292:542–9.

    Article  CAS  PubMed  Google Scholar 

  70. Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem. 2012;287:14078–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee JH, Kim SY, Kil IS, Park JW. Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+−dependent isocitrate dehydrogenase. J Biol Chem. 2007;282:13385–94.

    Article  CAS  PubMed  Google Scholar 

  72. Metallo CM, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481:380–4.

    CAS  Google Scholar 

  73. Filipp FV, Scott DA, Ronai ZA, Osterman AL, Smith JW. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res. 2012;25:375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Balss J, et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116:597–602.

    Article  CAS  PubMed  Google Scholar 

  76. Bleeker FE, et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat. 2009;30:7–11.

    Article  CAS  PubMed  Google Scholar 

  77. Hartmann C, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118:469–74.

    Article  PubMed  Google Scholar 

  78. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Byeon SJ, et al. Distinct genetic alterations in pediatric glioblastomas. Childs Nerv Syst. 2012;28:1025–32.

    Article  PubMed  Google Scholar 

  80. Mardis ER, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thol F, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95:1668–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Borger DR, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72–9.

    Article  CAS  PubMed  Google Scholar 

  83. Wang P, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32:3091–100.

    Article  CAS  PubMed  Google Scholar 

  84. Amary MF, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–43.

    Article  CAS  PubMed  Google Scholar 

  85. Marcucci G, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2010;28:2348–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abdel-Wahab O, Patel J, Levine RL. Clinical implications of novel mutations in epigenetic modifiers in AML. Hematol Oncol Clin North Am. 2011;25:1119–33.

    Article  PubMed  Google Scholar 

  87. DiNardo, C. et al. Molecular Profiling and Relationship with Clinical Response in Patients with IDH1 Mutation-Positive Hematologic Malignancies Receiving AG-120, a First-in-Class Potent Inhibitor of Mutant IDH1, in Addition to Data from the Completed Dose Escalation Portio…. Blood. 2015; 126:1306.

    Google Scholar 

  88. Patnaik MM, et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia. 2012;26:101–5.

    Article  CAS  PubMed  Google Scholar 

  89. Goyal L, et al. Prognosis and Clinicopathologic features of patients with advanced stage Isocitrate dehydrogenase (IDH) mutant and IDH wild-type intrahepatic Cholangiocarcinoma. Oncologist. 2015;20:1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Churi CR, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One. 2014;9:e115383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhu AX, et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets. Ann Surg Oncol. 2014;21:3827–34.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ward PS, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu X, et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem. 2004;279:33946–57.

    Article  CAS  PubMed  Google Scholar 

  95. Dang L, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2010;465:966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gross S, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010;207:339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174:1149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lai A, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29:4482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu C, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu C, et al. Induction of sarcomas by mutant IDH2. Genes Dev. 2013;27:1986–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Koivunen P, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483:484–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.

    Google Scholar 

  103. Saha SK, et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sasaki M, et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 2012;26:2038–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Network TCGAR. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372:2481–98.

    Article  CAS  Google Scholar 

  106. Eckel-Passow JE, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Losman J-A, Kaelin WG. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27:836–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Noushmehr H, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Duncan CG, et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res. 2012.

    Google Scholar 

  111. Figueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu W, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim YH, et al. TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol. 2011;64:850–2.

    Article  CAS  PubMed  Google Scholar 

  114. Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7:715–27.

    Article  CAS  PubMed  Google Scholar 

  115. Chen Z, et al. Structural insights into histone demethylation by JMJD2 family members. Cell. 2006;125:691–702.

    Article  CAS  PubMed  Google Scholar 

  116. Hu Z, et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene. 2001;20:6946–54.

    Article  CAS  PubMed  Google Scholar 

  117. Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16:9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Venneti S, et al. Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. J Neuropathol Exp Neurol. 2013;72:298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chowdhury R, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12:463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhao S, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science. 2009;324:261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Williams SC, et al. R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1alpha upregulation in adult glioma. Acta Neuropathol. 2011;121:279–81.

    Article  PubMed  Google Scholar 

  122. Fu X, et al. 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metab. 2015.

    Google Scholar 

  123. Chin RM, et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV, MYC, Metabolism, and cancer. Cancer Discov. 2015.

    Google Scholar 

  125. Duesberg PH, Vogt PK. Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: evidence for a second class of transforming genes. Proc Natl Acad Sci U S A. 1979;76:1633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu SS, Lai MM, Vogt PK. Genome of avian myelocytomatosis virus MC29: analysis by heteroduplex mapping. Proc Natl Acad Sci U S A. 1979;76:1265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Beroukhim R, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dean M, et al. Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem. 1986;261:9161–6.

    CAS  PubMed  Google Scholar 

  129. Zeller KI, et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A. 2006;103:17834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Morrish F, Isern N, Sadilek M. Jeffrey, M. & Hockenbery, D.M. C-Myc activates multiple metabolic networks to generate substrates for cell cycle entry. Oncogene. 2009;28:2485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim JW, et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24:5923–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shim H, et al. C-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997;94:6658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Osthus RC, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275:21797–800.

    Article  CAS  PubMed  Google Scholar 

  134. Gao P, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Morrish F, et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem. 2010;285:36267–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Edmunds LR, et al. C-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem. 2014;289:25382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li F, et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005;25:6225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang H, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11:407–20.

    Article  CAS  PubMed  Google Scholar 

  139. Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008;3:e1798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Wonsey DR, Zeller KI, Dang CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci U S A. 2002;99:6649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Palaskas N, et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 2011;71:5164–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Alles MC, et al. Meta-analysis and gene set enrichment relative to er status reveal elevated activity of MYC and E2F in the "basal" breast cancer subgroup. PLoS One. 2009;4:e4710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Chandriani S, et al. A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One. 2009;4:e6693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Shen L, et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A. 2015;112:5425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Timmerman, Luika A, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 2013; 24:450–65.

    Google Scholar 

  146. Yuneva MO, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15:157–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gnarra JR, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7:85–90.

    Article  CAS  PubMed  Google Scholar 

  148. Williamson SR, et al. Succinate dehydrogenase-deficient renal cell carcinoma: detailed characterization of 11 tumors defining a unique subtype of renal cell carcinoma. Mod Pathol. 2015;28:80–94.

    Article  CAS  PubMed  Google Scholar 

  149. Linehan WM, Rouault TA. Molecular pathways: Fumarate hydratase-deficient kidney cancer-targeting the Warburg effect in cancer. Clin Cancer Res. 2013;19:3345–52.

    Google Scholar 

  150. Lussey-Lepoutre C, et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun. 2015;6:8784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sullivan LB, et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell. 2013;51:236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12:9–22.

    CAS  Google Scholar 

  154. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269:23757–63.

    CAS  PubMed  Google Scholar 

  155. Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem. 2001;276:43407–12.

    Article  CAS  PubMed  Google Scholar 

  156. Luo W, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lum JJ, et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007;21:1037–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Metallo CM, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011.

    Google Scholar 

  159. Wise DR, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Nat Acad Sci U S A. 2011.

    Google Scholar 

  160. Mullen AR, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2011.

    Google Scholar 

  161. Le A, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15:110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gameiro PA, et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 2013;17:372–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12:829–46.

    Article  CAS  PubMed  Google Scholar 

  164. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10:671–84.

    Article  CAS  PubMed  Google Scholar 

  165. Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.

    Article  CAS  PubMed  Google Scholar 

  166. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238:787–93.

    Article  CAS  PubMed  Google Scholar 

  167. Joerger M, Omlin A, Cerny T, Fruh M. The role of pemetrexed in advanced non small-cell lung cancer: special focus on pharmacology and mechanism of action. Curr Drug Targets. 2010;11:37–47.

    Article  CAS  PubMed  Google Scholar 

  168. Shewach DS, Lawrence TS. Antimetabolite radiosensitizers. J Clin Oncol. 2007;25:4043–50.

    Article  CAS  PubMed  Google Scholar 

  169. Kidd JG. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med. 1953;98:565–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Muller HJ, Boos J. Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998;28:97–113.

    Article  CAS  PubMed  Google Scholar 

  171. Broome JD. L-Asparaginase: discovery and development as a tumor-inhibitory agent. Cancer Treat Rep. 1981;65:111–4.

    CAS  PubMed  Google Scholar 

  172. Fu CH, Sakamoto KM. PEG-asparaginase. Expert Opin Pharmacother. 2007;8:1977–84.

    Article  CAS  PubMed  Google Scholar 

  173. Earl M. Incidence and management of asparaginase-associated adverse events in patients with acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2009;7:600–6.

    PubMed  Google Scholar 

  174. Wong A, Soo RA, Yong WP, Innocenti F. Clinical pharmacology and pharmacogenetics of gemcitabine. Drug Metab Rev. 2009;41:77–88.

    Article  CAS  PubMed  Google Scholar 

  175. Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med. 2003;33:228–37.

    Article  PubMed  Google Scholar 

  176. Kaplan O, et al. Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Res. 1990;50:544–51.

    CAS  PubMed  Google Scholar 

  177. Dwarakanath BS, et al. Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects. J Cancer Res Ther. 2009;5(Suppl 1):S21–6.

    Article  CAS  PubMed  Google Scholar 

  178. Landau BR, Laszlo J, Stengle J, Burk D. Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst. 1958;21:485–94.

    CAS  PubMed  Google Scholar 

  179. Mohanti BK, et al. Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys. 1996;35:103–11.

    Article  CAS  PubMed  Google Scholar 

  180. Singh D, et al. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol. 2005;181:507–14.

    Article  PubMed  Google Scholar 

  181. Allen BG, et al. Ketogenic diets as an adjuvant cancer therapy: history and potential mechanism. Redox Biol. 2014;2:963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Valayannopoulos V, et al. Successful treatment of severe cardiomyopathy in glycogen storage disease type III with D,L-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatr Res. 2011;70:638–41.

    Article  CAS  PubMed  Google Scholar 

  183. Neal EG, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500–6.

    Article  PubMed  Google Scholar 

  184. Allen BG, et al. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res. 2013;19:3905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14:202–8.

    Article  CAS  PubMed  Google Scholar 

  186. Zuccoli G, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutr Metab (Lond). 2010;7:33.

    Article  CAS  Google Scholar 

  187. Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutr Metab (Lond). 2011;8:54.

    Article  CAS  Google Scholar 

  188. Gross MI, et al. Antitumor activity of the Glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901.

    Article  CAS  PubMed  Google Scholar 

  189. Xiang Y, et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest. 2015;125:2293–306.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Seltzer MJ, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70:8981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Harding JJ, et al. ASCO Annual Meeting Proceedings 2512. 2015.

    Google Scholar 

  192. Vogl DT, et al. Blood (Amer Soc Hematology 2021 L ST NW, SUITE 900, WASHINGTON, DC 20036 USA, 2015).

    Google Scholar 

  193. Popovici-Muller J, et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med Chem Lett. 2012;3:850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rohle D, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chaturvedi A, et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood. 2013;122:2877–87.

    Article  CAS  PubMed  Google Scholar 

  196. Wang F, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340:622–6.

    Article  CAS  PubMed  Google Scholar 

  197. Kernytsky A, et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood. 2015;125:296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Stein EM, et al. AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase I study in patients with IDH2 mutation positive advanced hematologic malignancies. Blood. 2014;124:115.

    Google Scholar 

  199. Burris H, et al. Abstract PL04-05: the first reported results of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a phase I study of patients with advanced IDH1-mutant solid tumors, including gliomas. Mol Cancer Ther. 2015;14:PL04-05.

    Article  Google Scholar 

  200. Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99:989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta. 2014;1846:617–29.

    CAS  PubMed  Google Scholar 

  202. Bonnet S, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51.

    Article  CAS  PubMed  Google Scholar 

  203. Xie J, et al. Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol. 2011;38:409–17.

    CAS  PubMed  Google Scholar 

  204. Michelakis ED, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2:31ra34.

    Article  CAS  PubMed  Google Scholar 

  205. Lee B, Oh S-W, Myung S-K. Efficacy of vitamin C supplements in prevention of cancer: a meta-analysis of randomized controlled trials. Korean J Family Med. 2015;36:278–85.

    Article  Google Scholar 

  206. Coulter ID, et al. Antioxidants vitamin C and vitamin e for the prevention and treatment of cancer. J Gen Intern Med. 2006;21:735–44.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Yun J, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350:1391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Du J, et al. Pharmacological Ascorbate Radiosensitizes pancreatic cancer. Cancer Res. 2015;75:3314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Blackhall F. O11.5Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Annals of oncology 26. In: ii15; 2015.

    Google Scholar 

  210. Hong, Candice S, et al. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep. 14:1590–601.

    Google Scholar 

  211. Bola BM, et al. Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 2014;13:2805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Brenner AJ, et al. ASCO Annual Meeting Proceedings TPS2615. 2015.

    Google Scholar 

  213. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–4.

    Article  CAS  PubMed  Google Scholar 

  214. Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annu Rev Med. 2015;66:17–29.

    Article  CAS  PubMed  Google Scholar 

  215. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–5.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Franciosi M, et al. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One. 2013;8:e71583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism. 2013;62:922–34.

    Article  CAS  PubMed  Google Scholar 

  218. Home PD, et al. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (a diabetes outcome progression trial) and RECORD (rosiglitazone evaluated for cardiovascular outcomes and regulation of glycaemia in diabetes) clinical trials. Diabetologia. 2010;53:1838–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Rizos CV, Elisaf MS. Metformin and cancer. Eur J Pharmacol. 2013;705:96–108.

    Article  CAS  PubMed  Google Scholar 

  220. Hadad S, et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat. 2011;128:783–94.

    Article  CAS  PubMed  Google Scholar 

  221. Niraula S, et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat. 2012;135:821–30.

    Article  CAS  PubMed  Google Scholar 

  222. Bonanni B, et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol. 2012;30:2593–600.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Venneti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wahl, D.R., Venneti, S. (2018). Cancer Metabolism. In: Lewis, J., Keshari, K. (eds) Imaging and Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-319-61401-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61401-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61399-4

  • Online ISBN: 978-3-319-61401-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics