Skip to main content

Introduction: MRI/MRS as Metabolic Imaging Tools

  • Chapter
  • First Online:
Imaging and Metabolism

Abstract

Metabolic imaging using magnetic resonance has its roots in a relatively obscure technology, used by physicists in the late 1940s to study the nuclear magnetic moments of nuclei. This technique was nuclear magnetic resonance (NMR), based on the original observations of Bloch and Purcell in 1946 that nuclei with a given spin could be studied by applying an oscillating radiofrequency field, at a frequency corresponding to energy difference between nuclear orientations. When this so-called “resonance” frequency is applied to matter, the resulting emitted signal is the basis for NMR and magnetic resonance imaging (MRI). The discovery most relevant to metabolic imaging was that of chemical shift, described in several publications in 1949–1950, and the consequence of the subtle changes in local magnetic field, resulting from electric shell interactions. This remarkable finding is the fundamental principle of magnetic resonance spectroscopy (MRS), whereby nuclei can be identified reliably depending on their chemical structure, independent of magnetic field strength. Today in the clinic, several key metabolites present in the brain are easily identified using MRS techniques. Changes in the frequency-specific metabolic map or “spectrum” are used to diagnose disease and monitor the effects of medical treatments, in cancer and other illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibby WA. Basic principles of magnetic resonance imaging. Neurosurg Clin N Am. 2005;16:1–64. doi:10.1016/j.nec.2004.08.017.

    Article  PubMed  Google Scholar 

  2. Plewes DB, Kucharczyk W. Physics of MRI: a primer. J Magn Reson Imaging. 2012;35:1038–54. doi:10.1002/jmri.23642.

    Article  PubMed  Google Scholar 

  3. Pooley RA. AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics. 2005;25:1087–99. doi:10.1148/rg.254055027.

    Article  PubMed  Google Scholar 

  4. Perman WH, Balci NC, Akduman I. Review of magnetic resonance spectroscopy in the liver and the pancreas. Top Magn Reson Imaging. 2009;20:89–97. doi:10.1097/RMR.0b013e3181c422f1.

    Article  PubMed  Google Scholar 

  5. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984;11:425–48. doi:10.1118/1.595535.

    Article  CAS  PubMed  Google Scholar 

  6. Bitar R, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26:513–37. doi:10.1148/rg.262055063.

    Article  PubMed  Google Scholar 

  7. Gallagher TA, Nemeth AJ, Hacein-Bey L. An introduction to the Fourier transform: relationship to MRI. AJR Am J Roentgenol. 2008;190:1396–405. doi:10.2214/AJR.07.2874.

    Article  PubMed  Google Scholar 

  8. Skoch A, Jiru F, Bunke J. Spectroscopic imaging: basic principles. Eur J Radiol. 2008;67:230–9. doi:10.1016/j.ejrad.2008.03.003.

    Article  PubMed  Google Scholar 

  9. van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010;39:527–40. doi:10.1007/s00249-009-0517-y.

    Article  PubMed  Google Scholar 

  10. Haase A, et al. MR imaging using stimulated echoes (STEAM). Radiology. 1986;160:787–90. doi:10.1148/radiology.160.3.3737918.

    Article  CAS  PubMed  Google Scholar 

  11. Moonen CT, et al. Comparison of single-shot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed. 1989;2:201–8.

    Article  CAS  PubMed  Google Scholar 

  12. Keshari KR, Wilson DM. Chemistry and biochemistry of C-13 hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev. 2014;43:1627–59.

    Article  CAS  PubMed  Google Scholar 

  13. Mekle R, et al. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med. 2009;61:1279–85. doi:10.1002/mrm.21961.

    Article  CAS  PubMed  Google Scholar 

  14. Wilson DM, Kurhanewicz J. Hyperpolarized 13C MR for molecular imaging of prostate cancer. J Nucl Med. 2014;55:1567–72. doi:10.2967/jnumed.114.141705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abragam A, Goldman M. Principles of dynamic nuclear-polarization. Rep Prog Phys. 1978;41:395–467.

    Article  CAS  Google Scholar 

  16. Ardenkjaer-Larsen JH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100:10158–63. doi:10.1073/pnas.1733835100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park I, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology. 2010;12:133–44. doi:10.1093/neuonc/nop043.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nelson SJ, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med. 2013; 5:198ra108, doi:10.1126/scitranslmed.3006070

  19. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143:79–87. doi:10.1006/jmre.1999.1956.

    Article  CAS  PubMed  Google Scholar 

  20. van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med. 2011;65:927–48. doi:10.1002/mrm.22761.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Walker-Samuel S, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19:1067–72. doi:10.1038/nm.3252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woods M, et al. Synthesis, relaxometric and photophysical properties of a new pH-responsive MRI contrast agent: the effect of other ligating groups on dissociation of a p-nitrophenolic pendant arm. J Am Chem Soc. 2004;126:9248–56. doi:10.1021/ja048299z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duimstra JA, Femia FJ, Meade TJ. A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach. J Am Chem Soc. 2005;127:12847–55. doi:10.1021/ja042162r.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wilson, D., Ohliger, M. (2018). Introduction: MRI/MRS as Metabolic Imaging Tools. In: Lewis, J., Keshari, K. (eds) Imaging and Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-319-61401-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61401-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61399-4

  • Online ISBN: 978-3-319-61401-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics