Skip to main content

Removal Strategies for Carious Tissues in Deep Lesions

  • Chapter
  • First Online:

Abstract

It used to be considered preferable to remove all carious tissues with any signs of disease, regardless of the consequences, even at the expense of the hard tissue, causing stress to, or exposing, the dental pulp. However, it is now understood that this is not only unnecessary but also undesirable. Bacteria can be sealed under restorations, depriving them of nutrition and inactivating them.

In asymptomatic, vital teeth with deep lesions, strategies for conservative carious tissue removal which reduce tissue loss and pulp exposure risk have to be balanced against removing adequate tissue to maximize restoration longevity. The criterion used to guide carious dentin tissue removal is hardness, judged by tactile feedback during examination. The levels are described as: Hard, Firm, Leathery, and Soft Dentin. The four main strategies for carious tissue removal are: Non-selective Removal to Hard Dentin (now considered to be overtreatment and too destructive and not recommended); Selective Removal to Firm Dentin; Selective Removal to Soft Dentin; and Stepwise Removal.

Other strategies for managing deep carious lesions are: Non-Restorative Cavity Control where lesions are made cleansable, and Sealing-In strategies (including Fissure Sealing in permanent and primary teeth and sealing using a preformed crown in primary teeth). These strategies for managing carious tissues result in a change in the biofilm (reduced bacterial diversity, numbers, and cariogenic potential). The guiding principles behind removal and sealing are underpinned by a desire to preserve tissue, avoid pulp exposure, and maximize tooth longevity.

This is a preview of subscription content, log in via an institution.

References

  1. Black GV. Part 1 Pathology of hard tissues of the teeth: oral diagnosis. Part III Treatment of caries. Operative dentistry. 7th ed. London: Medico-Dental Publishing; 1936.

    Google Scholar 

  2. Qvist V. Longevity of restorations: the ‘death spiral’. In: Fejerskov O, EAM K, editors. Dental caries: the disease and its clinical management. 2nd ed. Oxford: Blackwell Munksgaard; 2008. p. 444–55.

    Google Scholar 

  3. Schwendicke F, Frencken JE, Bjorndal L, Maltz M, Manton DJ, Ricketts D, et al. Managing carious lesions: consensus recommendations on carious tissue removal. Adv Dent Res. 2016;28(2):58–67.

    Article  PubMed  Google Scholar 

  4. Oong EM, Griffin SO, Kohn WG, Gooch BF, Caufield PW. The effect of dental sealants on bacteria levels in caries lesions. J Am Dent Assoc. 2008;139(3):271–8.

    Article  PubMed  Google Scholar 

  5. Bertassoni LE, Habelitz S, Marshall SJ, Marshall GW. Mechanical recovery of dentin following remineralization in vitro—an indentation study. J Biomech. 2011;44(1):176–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Innes NP, Frencken JE, Bjorndal L, Maltz M, Manton DJ, Ricketts D, et al. Managing carious lesions: consensus recommendations on terminology. Adv Dent Res. 2016;28(2):49–57.

    Article  PubMed  Google Scholar 

  7. Schwendicke F, Stolpe M, Meyer-Lueckel H, Paris S, Dörfer CE. Cost-effectiveness of one- and two-step incomplete and complete excavations. J Dent Res. 2013;90(10):880–7.

    Article  Google Scholar 

  8. Whitworth JM, Myers PM, Smith J, Walls AW, McCabe JF. Endodontic complications after plastic restorations in general practice. Int Endod J. 2005;38(6):409–16.

    Article  PubMed  Google Scholar 

  9. Bjørndal L, Reit C, Bruun G, Markvart M, Kjaeldgaard M, Nasman P, et al. Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur J Oral Sci. 2010;118(3):290–7.

    Article  PubMed  Google Scholar 

  10. Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc. 2008;139(3):305–15; quiz 305−15.

    Article  PubMed  Google Scholar 

  11. Hilton TJ, Ferracane JL, Mancl L. For northwest practice-based research collaborative in evidence-based D. Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res. 2013;92(7 suppl):S16–22.

    Article  PubMed Central  Google Scholar 

  12. Mente J, Geletneky B, Ohle M, Koch MJ, Friedrich Ding PG, Wolff D, et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod. 2010;36(5):806–13.

    Article  PubMed  Google Scholar 

  13. Marques MS, Wesselink PR, Shemesh H. Outcome of direct pulp capping with mineral trioxide aggregate: a prospective study. J Endod. 2015;41(7):1026–31.

    Article  PubMed  Google Scholar 

  14. Asgary S, Eghbal M, Ghoddusi J, Yazdani S. One-year results of vital pulp therapy in permanent molars with irreversible pulpitis: an ongoing multicenter, randomized, non-inferiority clinical trial. Clin Oral Investig. 2013;17(2):431–9.

    Article  PubMed  Google Scholar 

  15. Asgary S, Ehsani S. Permanent molar pulpotomy with a new endodontic cement: a case series. J Conserv Dent. 2009;12(1):31–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Asgary S, Fazlyab M, Sabbagh S, Eghbal MJ. Outcomes of different vital pulp therapy techniques on symptomatic permanent teeth: a case series. Iran Endod J. 2014;9(4):295–300.

    PubMed  PubMed Central  Google Scholar 

  17. Bjorndal L, Reit C, Bruun G, Markvart M, Kjaeldgaard M, Nasman P, et al. Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur J Oral Sci. 2010;118(3):290–7.

    Article  PubMed  Google Scholar 

  18. Stangvaltaite L, Schwendicke F, Holmgren C, Finet M, Maltz M, Elhennawy K, et al. Management of pulps exposed during carious tissue removal in adults: a multi-national questionnaire-based survey. Clin Oral Investig. 2017;21(7):2303–9.

    Article  PubMed  Google Scholar 

  19. Hevinga MA, Opdam NJ, Frencken JE, Truin GJ, Huysmans MC. Does incomplete caries removal reduce strength of restored teeth? J Dent Res. 2010;89(11):1270–5.

    Article  PubMed  Google Scholar 

  20. Schwendicke F, Kern M, Blunck U, Dorfer C, Drenck J, Paris S. Marginal integrity and secondary caries of selectively excavated teeth in vitro. J Dent. 2014;42(10):1261–8.

    Article  PubMed  Google Scholar 

  21. Schwendicke F, Kern M, Meyer-Lueckel H, Boels A, Doerfer C, Paris S. Fracture resistance and cuspal deflection of incompletely excavated teeth. J Dent. 2013;42(2):107–13.

    Article  PubMed  Google Scholar 

  22. Bakhshandeh A, Qvist V, Ekstrand K. Sealing occlusal caries lesions in adults referred for restorative treatment: 2–3 years of follow-up. Clin Oral Investig. 2012;16(2):521–9.

    Article  PubMed  Google Scholar 

  23. Mertz-Fairhurst EJ, Curtis JW, Ergle JW, Rueggeberg FA, Adair SM. Ultraconservative and cariostatic sealed restorations: results at year 10. J Am Dent Assoc. 1998;129(1):55–66.

    Article  PubMed  Google Scholar 

  24. Hesse D, Bonifacio CC, Mendes FM, Braga MM, Imparato JC, Raggio DP. Sealing versus partial caries removal in primary molars: a randomized clinical trial. BMC Oral Health. 2014;14:58.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ogawa K, Yamashita Y, Ichijo T, Fusayama T. The ultrastructure and hardness of the transparent layer of human carious dentin. J Dent Res. 1983;62(1):7–10.

    Article  PubMed  Google Scholar 

  26. Ricketts D, Lamont T, Innes NP, Kidd E, Clarkson JE. Operative caries management in adults and children. Cochrane Database Syst Rev. 2013;28(3):CD003808.

    Google Scholar 

  27. Schwendicke F, Paris S, Tu YK. Effects of using different criteria for caries removal: a systematic review and network meta-analysis. J Dent. 2015;43(1):1–15. https://doi.org/10.1016/j.jdent.2014.10.004.

    Article  PubMed  Google Scholar 

  28. Kidd EA, Joyston-Bechal S, Beighton D. Microbiological validation of assessments of caries activity during cavity preparation. Caries Res. 1993;27(5):402–8.

    Article  PubMed  Google Scholar 

  29. Fusayama T, Okuse K, Hosoda H. Relationship between hardness, discoloration, and microbial invasion in carious dentin. J Dent Res. 1966;45(4):1033–46.

    Article  PubMed  Google Scholar 

  30. Fusayama T, Kurosaki N. Structure and removal of carious dentin. Int Dent J. 1972;22(3):401–11.

    PubMed  Google Scholar 

  31. Buchalla W, Lennon Á, Attin T. Comparative fluorescence spectroscopy of root caries lesions. Eur J Oral Sci. 2004;112(6):490.

    Article  PubMed  Google Scholar 

  32. Lennon AM, Attin T, Martens S, Buchalla W. Fluorescence-aided caries excavation (FACE), caries detector, and conventional caries excavation in primary teeth. Pediatr Dent. 2009;31(4):316–9.

    PubMed  Google Scholar 

  33. Lennon AM, Attin T, Buchalla W. Quantity of remaining bacteria and cavity size after excavation with FACE, caries detector dye and conventional excavation in vitro. Oper Dent. 2007;32(3):236–41.

    Article  PubMed  Google Scholar 

  34. Hosoya Y, Taguchi T, Tay FR. Evaluation of a new caries detecting dye for primary and permanent carious dentin. J Dent. 2007;35(2):137–43.

    Article  PubMed  Google Scholar 

  35. Itoh K, Kusunoki M, Oikawa M, Tani C, Hisamitsu H. In vitro comparison of three caries dyes. Am J Dent. 2009;22(4):195–9.

    PubMed  Google Scholar 

  36. Iwami Y, Hayashi N, Takeshige F, Ebisu S. Relationship between the color of carious dentin with varying lesion activity, and bacterial detection. J Dent. 2008;36(2):143–51.

    Article  PubMed  Google Scholar 

  37. Iwami Y, Shimizu A, Hayashi M, Takeshige F, Ebisu S. Relationship between colors of carious dentin and laser fluorescence evaluations in caries diagnosis. Dent Mater J. 2006;25(3):584–90.

    Article  PubMed  Google Scholar 

  38. Kidd EA, Joyston-Bechal S, Beighton D. The use of a caries detector dye during cavity preparation: a microbiological assessment. Br Dent J. 1993;174(7):245–8.

    Article  PubMed  Google Scholar 

  39. Schwendicke F, Dorfer CE, Paris S. Incomplete caries removal: a systematic review and meta-analysis. J Dent Res. 2013;92(4):306–14.

    Article  PubMed  Google Scholar 

  40. Bjørndal L, Larsen T, Thylstrup A. A clinical and microbiological study of deep carious lesions during stepwise excavation using long treatment intervals. Caries Res. 1997;31(6):411–7.

    Article  PubMed  Google Scholar 

  41. Bjørndal L, Larsen T. Changes in the cultivable flora in deep carious lesions following a stepwise excavation procedure. Caries Res. 2000;34(6):502–8.

    Article  PubMed  Google Scholar 

  42. Paddick JS, Brailsford SR, Kidd EA, Beighton D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl Environ Microbiol. 2005;71(5):2467–72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maltz M, Garcia R, Jardim JJ, de Paula LM, Yamaguti PM, Moura MS, et al. Randomized trial of partial vs. stepwise caries removal: 3-year follow-up. J Dent Res. 2012;91(11):1026–31.

    Article  PubMed  Google Scholar 

  44. Schwendicke F, Meyer-Lückel H, Dorfer C, Paris S. Failure of incompletely excavated teeth—a systematic review. J Dent. 2013;41(7):569–80.

    Article  PubMed  Google Scholar 

  45. Mertz-Fairhurst EJ, Call-Smith KM, Shuster GS, Williams JE, Davis QB, Smith CD, et al. Clinical performance of sealed composite restorations placed over caries compared with sealed and unsealed amalgam restorations. J Am Dent Assoc. 1987;115(5):689–94.

    Article  PubMed  Google Scholar 

  46. Fontana M, Platt JA, Eckert GJ, Gonzalez-Cabezas C, Yoder K, Zero DT, et al. Monitoring of sound and carious surfaces under sealants over 44 months. J Dent Res. 2014;93(11):1070–5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wright JT, Crall JJ, Fontana M, Gillette EJ, Novy BB, Dhar V, et al. Evidence-based clinical practice guideline for the use of pit-and-fissure sealants: a report of the American Dental Association and the American Academy of Pediatric Dentistry. J Am Dent Assoc. 2016;147(8):672–82. e12.

    Article  PubMed  Google Scholar 

  48. Innes NP, Evans DJ, Stirrups DR. The Hall Technique; a randomized controlled clinical trial of a novel method of managing carious primary molars in general dental practice: acceptability of the technique and outcomes at 23 months. BMC Oral Health. 2007;7:18.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Santamaria RM, Innes NP, Machiulskiene V, Evans DJ, Splieth CH. Caries management strategies for primary molars: 1-yr randomized control trial results. J Dent Res. 2014;93(11):1062–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Innes NP, Evans DJ, Stirrups DR. Sealing caries in primary molars: randomized control trial, 5-year results. J Dent Res. 2011;90(12):1405–10.

    Article  PubMed  Google Scholar 

  51. Santamaria RM, Innes NP, Machiulskiene V, Evans DJ, Alkilzy M, Splieth CH. Acceptability of different caries management methods for primary molars in a RCT. Int J Paediatr Dent. 2015;25(1):9–17.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Schwendicke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwendicke, F., Innes, N. (2018). Removal Strategies for Carious Tissues in Deep Lesions. In: Schwendicke, F. (eds) Management of Deep Carious Lesions. Springer, Cham. https://doi.org/10.1007/978-3-319-61370-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61370-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61369-7

  • Online ISBN: 978-3-319-61370-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics