Diffusion MRI Anisotropy: Modeling, Analysis and Interpretation

  • Rutger H. J. FickEmail author
  • Marco Pizzolato
  • Demian Wassermann
  • Rachid Deriche
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


The micro-architecture of brain tissue obstructs the movement of diffusing water molecules, causing tissue-dependent, often anisotropic diffusion profiles. In diffusion MRI (dMRI), the relation between brain tissue structure and diffusion anisotropy is studied using oriented diffusion gradients, resulting in tissue- and orientation-dependent diffusion-weighted images (DWIs). Over time, various methods have been proposed that summarize these DWIs, that can be measured at different orientations, gradient strengths and diffusion times into one “diffusion anisotropy” measure. This book chapter is dedicated to understanding the similarities and differences between the diffusion anisotropy metrics that different methods estimate. We first discuss the physical interpretation of diffusion anisotropy in terms of the diffusion properties around nervous tissue. We then explain how DWIs are influenced by diffusion anisotropy and the parameters of the dMRI acquisition itself. We then go through the state-of-the-art of signal-based and multi-compartment-based dMRI methods that estimate diffusion anisotropy-related methods, focusing on their limitations and applications. We finally discuss confounding factors in the estimation of diffusion anisotropy and current challenges.



Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. This work was partly supported by ANR “MOSIFAH” under ANR-13-MONU-0009-01 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665: CoBCoM). The author Marco Pizzolato expresses his thanks to Olea Medical and the Provence-Alpes-Côte d’Azur (PACA) Regional Council for providing grant and support. We thank Mauro Zucchelli for useful discussions.


  1. 1.
    Aboitiz, F., Scheibel, A.B., Fisher, R.S., Zaidel, E.: Fiber composition of the human corpus callosum. Brain Res. 598(1), 143–153 (1992)CrossRefGoogle Scholar
  2. 2.
    Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010)Google Scholar
  3. 3.
    Alexander, D.C.: An introduction to computational diffusion MRI: the diffusion tensor and beyond. In: Visualization and Processing of Tensor Fields, pp. 83–106. Springer, Berlin (2006)Google Scholar
  4. 4.
    Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52(4), 1374–1389 (2010)CrossRefGoogle Scholar
  5. 5.
    Andersson, J.L.R., Xu, J., Yacoub, E., Auerbach, E., Moeller, S., Ugurbil, K.: A comprehensive gaussian process framework for correcting distortions and movements in diffusion images. In: Proceedings of the 20th Annual Meeting of ISMRM, p. 2426 (2012)Google Scholar
  6. 6.
    Åslund, I., Topgaard, D.: Determination of the self-diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length. J. Magn. Reson. 201(2), 250–254 (2009)CrossRefGoogle Scholar
  7. 7.
    Assaf, Y., Pasternak, O.: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34(1), 51–61 (2008)CrossRefGoogle Scholar
  8. 8.
    Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004)CrossRefGoogle Scholar
  9. 9.
    Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008)CrossRefGoogle Scholar
  10. 10.
    Assemlal, H.-E., Tschumperlé, D., Brun, L.: Efficient and robust computation of PDF features from diffusion MR signal. Med. Image Anal. 13(5), 715–729 (2009)CrossRefGoogle Scholar
  11. 11.
    Avram, A.V., Sarlls, J.E., Barnett, A.S., Özarslan, E., Thomas, C., Irfanoglu, M.O., Hutchinson, E., Pierpaoli, C., Basser, P.J.: Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. NeuroImage 127, 422–434 (2016)CrossRefGoogle Scholar
  12. 12.
    Basser, P.J.: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 8(7), 333–344 (1995)CrossRefGoogle Scholar
  13. 13.
    Basser, P.J.: Relationships between diffusion tensor and q-space MRI. Magn. Reson. Med. 47(2), 392–397 (2002)CrossRefGoogle Scholar
  14. 14.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259 (1994)CrossRefGoogle Scholar
  15. 15.
    Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15(7–8), 435–455 (2002)CrossRefGoogle Scholar
  16. 16.
    Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077–1088 (2003)CrossRefGoogle Scholar
  17. 17.
    Burcaw, L.M., Fieremans, E., Novikov, D.S.: Mesoscopic structure of neuronal tracts from time-dependent diffusion. NeuroImage 114, 18–37 (2015)CrossRefGoogle Scholar
  18. 18.
    Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy, vol. 3. Clarendon Press, Oxford (1991)Google Scholar
  19. 19.
    Callaghan, P.T.: Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. J. Magn. Reson. Ser. A 113(1), 53–59 (1995)CrossRefGoogle Scholar
  20. 20.
    Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69(6), 1534–1540 (2013)CrossRefGoogle Scholar
  21. 21.
    Cheung, M.M., Hui, E.S., Chan, K.C., Helpern, J.A., Qi, L., Wu, E.X.: Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. NeuroImage 45(2), 386–392 (2009)Google Scholar
  22. 22.
    Cohen, Y., Assaf, Y.: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues – a technical review. NMR Biomed. 15(7–8), 516–542 (2002)CrossRefGoogle Scholar
  23. 23.
    Cohen-Adad, J., El Mendili, M.M., Lehéricy, S., Pradat, P.F., Blancho, S., Rossignol, S., Benali, H.: Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. NeuroImage 55(3), 1024–1033 (2011)CrossRefGoogle Scholar
  24. 24.
    Cook, P.A., Bai, Y., Nedjati-Gilani, S.K.K.S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, vol. 2759. Seattle, WA (2006)Google Scholar
  25. 25.
    De Santis, S., Jones, D.K., Roebroeck, A.: Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. NeuroImage 130, 91–103 (2016)CrossRefGoogle Scholar
  26. 26.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)CrossRefGoogle Scholar
  27. 27.
    Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.-F., Poupon, C.: Multiple q-shell diffusion propagator imaging. Med. Image Anal. 15(4), 603–621 (2011)CrossRefGoogle Scholar
  28. 28.
    Einstein, A.: Investigations on the Theory of the Brownian Movement. Courier Corporation (1956)Google Scholar
  29. 29.
    Fick, R., Daianu, M., Pizzolato, M., Wassermann, D., Jacobs, R.E., Thompson, P.M., Town, T., Deriche, R.: Comparison of biomarkers in transgenic alzheimer rats using multi-shell diffusion MRI. In: Computational Diffusion MRI. Springer, Berlin (2016)Google Scholar
  30. 30.
    Fick, R., Petiet, A., Santin, M., Philippe, A.-C., Lehericy, S., Deriche, R., Wassermann, D.: Multi-spherical diffusion MRI: exploring diffusion time using signal sparsity. In: Computational Diffusion MRI. Springer, Berlin (2016)Google Scholar
  31. 31.
    Fick, R.H.J., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage 134, 365–385 (2016)CrossRefGoogle Scholar
  32. 32.
    Fieremans, E., Burcaw, L.M., Lee, H.-H., Lemberskiy, G., Veraart, J., Novikov, D.S.: In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter. NeuroImage 129, 414–427 (2016)CrossRefGoogle Scholar
  33. 33.
    Greve, D.N., Fischl, B.: Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48(1), 63–72 (2009)CrossRefGoogle Scholar
  34. 34.
    Hahn, E.L.: Spin echoes. Phys. Rev. 80(4), 580 (1950)CrossRefzbMATHGoogle Scholar
  35. 35.
    Hansen, B., Jespersen, S.N.: Kurtosis fractional anisotropy, its contrast and estimation by proxy. Sci. Rep. 6 (2016)Google Scholar
  36. 36.
    Hirata, F.C.C., Sato, J.R., Vieira, G., Lucato, L.T., Leite, C.C., Bor-Seng-Shu, E., Pastorello, B.F., Otaduy, M.C.G., Chaim, K.T., Campanholo, K.R., et al.: Substantia nigra fractional anisotropy is not a diagnostic biomarker of parkinson’s disease: a diagnostic performance study and meta-analysis. Eur. Radiol. 27(6), 2640–2648 (2017)CrossRefGoogle Scholar
  37. 37.
    Hosseinbor, A.P., Chung, M.K., Wu, Y.-C., Alexander, A.L.: Bessel Fourier orientation reconstruction (BFOR): an analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)CrossRefGoogle Scholar
  38. 38.
    Jelescu, I.O., Veraart, J., Fieremans, E., Novikov, D.S.: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR Biomed. 29(1), 33–47 (2016)CrossRefGoogle Scholar
  39. 39.
    Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005)CrossRefGoogle Scholar
  40. 40.
    Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1–23 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kaden, E., Knösche, T.R., Anwander, A.: Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. NeuroImage 37(2), 474–488 (2007)CrossRefGoogle Scholar
  42. 42.
    Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75(4), 1752–1763 (2016)CrossRefGoogle Scholar
  43. 43.
    Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)CrossRefGoogle Scholar
  44. 44.
    Kärger, J., Heink, W.: The propagator representation of molecular transport in microporous crystallites. J. Magn. Reson. (1969) 51(1), 1–7 (1983)Google Scholar
  45. 45.
    Keil, B., Blau, J.N., Biber, S., Hoecht, P., Tountcheva, V., Setsompop, K., Triantafyllou, C., Wald, L.L.: A 64-channel 3t array coil for accelerated brain MRI. Magn. Reson. Med. 70(1), 248–258 (2013)CrossRefGoogle Scholar
  46. 46.
    Le Bihan, D., Breton, E.: Imagerie de diffusion in-vivo par résonance magnétique nucléaire. C. R. Acad. Sci. 93(5), 27–34 (1985)Google Scholar
  47. 47.
    Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001)CrossRefGoogle Scholar
  48. 48.
    Leergaard, T.B., White, N.S., De Crespigny, A., Bolstad, I., D’Arceuil, H., Bjaalie, J.G., Dale, A.M.: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLoS One 5(1), e8595 (2010)CrossRefGoogle Scholar
  49. 49.
    Liewald, D., Miller, R., Logothetis, N., Wagner, H.-J., Schüz, A.: Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol. Cybern. 108(5), 541–557 (2014)CrossRefGoogle Scholar
  50. 50.
    Merboldt, K.-D., Hanicke, W., Frahm, J.: Self-diffusion NMR imaging using stimulated echoes. J. Magn. Reson. (1969) 64(3), 479–486 (1985)Google Scholar
  51. 51.
    Moseley, M.E., Cohen, Y., Kucharczyk, J., Mintorovitch, J., Asgari, H.S., Wendland, M.F., Tsuruda, J., Norman, D.: Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2), 439–445 (1990)CrossRefGoogle Scholar
  52. 52.
    Novikov, D.S., Jensen, J.H., Helpern, J.A., Fieremans, E.: Revealing mesoscopic structural universality with diffusion. Proc. Natl. Acad. Sci. 111(14), 5088–5093 (2014)CrossRefGoogle Scholar
  53. 53.
    Özarslan, E., Basser, P.J., Shepherd, T.M., Thelwall, P.E., Vemuri, B.C., Blackband, S.J.: Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J. Magn. Reson. 183(2), 315–323 (2006)CrossRefGoogle Scholar
  54. 54.
    Özarslan, E., Shepherd, T.M., Koay, C.G., Blackband, S.J., Basser, P.J.: Temporal scaling characteristics of diffusion as a new MRI contrast: findings in rat hippocampus. NeuroImage 60(2), 1380–1393 (2012)CrossRefGoogle Scholar
  55. 55.
    Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)CrossRefGoogle Scholar
  56. 56.
    Rathi, Y., Michailovich, O., Laun, F., Setsompop, K., Grant, P.E., Westin, C.-F.: Multi-shell diffusion signal recovery from sparse measurements. Med. Image Anal. 18(7), 1143–1156 (2014)CrossRefGoogle Scholar
  57. 57.
    Ronen, I., Budde, M., Ercan, E., Annese, J., Techawiboonwong, A., Webb, A.: Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of n-acetylaspartate and post-mortem histology. Brain Struct. Funct. 219(5), 1773–1785 (2014)CrossRefGoogle Scholar
  58. 58.
    Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J.A., Keil, B., Tisdall, M.D., Hoecht, P., Dietz, P., et al.: Pushing the limits of in vivo diffusion MRI for the human connectome project. NeuroImage 80, 220–233 (2013)CrossRefGoogle Scholar
  59. 59.
    Soares, J., Marques, P., Alves, V., Sousa, N.: A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 7, 31 (2013)CrossRefGoogle Scholar
  60. 60.
    Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)CrossRefGoogle Scholar
  61. 61.
    Strimbu, K., Tavel, J.A.: What are biomarkers? Curr. Opin. HIV AIDS 5(6), 463 (2010)CrossRefGoogle Scholar
  62. 62.
    Tanner, J.E.: Transient diffusion in a system partitioned by permeable barriers. application to NMR measurements with a pulsed field gradient. J. Chem. Phys. 69(4), 1748–1754 (1978)Google Scholar
  63. 63.
    Tanner, J.E., Stejskal, E.O.: Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J. Chem. Phys. 49(4), 1768–1777 (1968)CrossRefGoogle Scholar
  64. 64.
    Taylor, D.G., Bushell, M.C.: The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys. Med. Biol. 30(4), 345 (1985)CrossRefGoogle Scholar
  65. 65.
    Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  66. 66.
    Tristán-Vega, A., Westin, C.-F., Aja-Fernández, S.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage 47(2), 638–650 (2009)CrossRefGoogle Scholar
  67. 67.
    Tristan-Vega, A., Westin, C.-F., Aja-Fernandez, S.: A new methodology for the estimation of fiber populations in the white matter of the brain with the funk–radon transform. NeuroImage 49(2), 1301–1315 (2010)CrossRefGoogle Scholar
  68. 68.
    Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)CrossRefGoogle Scholar
  69. 69.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)CrossRefGoogle Scholar
  70. 70.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40(5), 885–895 (2003)CrossRefGoogle Scholar
  71. 71.
    Waxman, S.G.: Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3(2), 141–150 (1980)CrossRefGoogle Scholar
  72. 72.
    Wedeen, V.J., Hagmann, P., Tseng, W.-Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
  73. 73.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rutger H. J. Fick
    • 1
    Email author
  • Marco Pizzolato
    • 1
  • Demian Wassermann
    • 1
  • Rachid Deriche
    • 1
  1. 1.Université Côte d’Azur, InriaAthena Project TeamSophia AntipolisFrance

Personalised recommendations