Skip to main content

Local Geometric Descriptors for Multi-Scale Probabilistic Point Classification of Airborne LiDAR Point Clouds

  • Conference paper
  • First Online:
Modeling, Analysis, and Visualization of Anisotropy

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Point classification is necessary for detection and extraction of geometric feature (folds, creases, junctions, surfaces), and subsequent 3D reconstruction of point-sampled geometry of topographic data captured using airborne LiDAR technology. Geometry-based point classification (line-, surface-, point-type features) is determined using shape of the local neighborhood, given by the local geometric descriptor (LGD) at every point in the point cloud. Covariance matrix of local neighborhoods is the conventionally used LGD in the LiDAR community. However, it is known that covariance analysis has drawbacks in detection of sharp features, which are a subset of the line-type features. Here, we compare the performance of new variants of existing LGDs, such as weighted covariance matrix, and that based on tensor voting concept, in geometric classification with that of covariance matrix. We propose a multi-scale probabilistic saliency map based on eigenvalues of the LGDs for computing the classification. Usually the state-of-the-art performance analyses of LGDs in the classification outcomes are done downstream after feature extraction. We propose that the comparisons may be done upstream at the classification stage itself, which can be achieved by expressing these LGDs as positive semidefinite second-order tensors. We perform qualitative comparisons of the tensor fields based on shape and orientation of the tensors, and the classification outcomes using visualizations. We visualize LGDs using superquadric tensor glyphs and point rendering, using our proposed saliency map as colormap. Our detailed comparative analysis shows that the new variant of LGDs based on tensor voting classify line-type features, especially sharp features, better than covariance-based LGDs. Our proposed LGD based on tensor voting performs better than the covariance matrix, for our goal of detecting sharp features, e.g. gabled roofs in buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we use geometric classes and feature classes interchangeably.

  2. 2.

    Here, we disambiguate tensor voting as the algorithm, and voting tensor as the second-order tensor, which is the outcome of the algorithm.

  3. 3.

    In Figs. 1, 4, and 7–10, color coding correspond to a geometric class or the combination of classes a point belongs to, which is determined by using the saliency maps. We use the colorblind safe color palette options from ColorBrewer2.0 http://colorbrewer2.org/.

  4. 4.

    We have demonstrated results on fan-disk and smooth-feature datasets, apart from airborne LiDAR datasets, purely for more comprehensible comparative analysis of LGDs for classification.

References

  1. Daniels, J., Ha, L.K., Ochotta, T., Silva, C.T.: Robust smooth feature extraction from point clouds. In: IEEE International Conference on Shape Modeling and Applications, 2007. SMI’07, pp. 123–136. IEEE, Piscataway (2007)

    Google Scholar 

  2. Demantké, J., Mallet, C., David, N., Vallet, B.: Dimensionality based Scale Selection in 3D LiDAR Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38(Part 5), W12 (2011)

    Google Scholar 

  3. Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 544–552. ACM, New York (2005)

    Google Scholar 

  4. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP ’05. Eurographics, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2005). http://dl.acm.org/citation.cfm?id=1281920.1281953

  5. Gressin, A., Mallet, C., Demantké, J., David, N.: Towards 3D LiDAR point cloud registration improvement using optimal neighborhood knowledge. ISPRS J. Photogramm. Remote Sens. 79, 240–251 (2013)

    Article  Google Scholar 

  6. Gumhold, S., Wang, X., MacLeod, R.: Feature extraction from point clouds. In: Proceedings of 10th International Meshing Roundtable, vol. 2001. Citeseer (2001)

    Google Scholar 

  7. Guy, G., Medioni, G.: Inference of Surfaces, 3D Curves, and Junctions from Sparse, Noisy, 3D Data. IEEE Trans. Pattern Anal. Mach. Intell. 19(11), 1265–1277 (1997)

    Article  Google Scholar 

  8. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26(2), 71–78 (1992). doi: doi: 10.1145/142920.134011. http://doi.acm.org/10.1145/142920.134011

  9. Javed, W., Elmqvist, N.: Exploring the design space of composite visualization. In: 2012 IEEE Pacific Visualization Symposium (PacificVis), pp. 1–8. IEEE, Piscataway (2012)

    Google Scholar 

  10. Keller, P., Kreylos, O., Vanco, M., Hering-Bertram, M., Cowgill, E.S., Kellogg, L.H., Hamann, B., Hagen, H.: Extracting and visualizing structural features in environmental point cloud LiDaR data sets. In: Topological Methods in Data Analysis and Visualization, pp. 179–192. Springer, Berlin (2011)

    Google Scholar 

  11. Kim, E., Medioni, G.: Urban scene understanding from aerial and ground lidar data. Mach. Vis. Appl. 22(4), 691–703 (2011)

    Article  Google Scholar 

  12. Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference on Visualization, pp. 147–154. Eurographics Association (2004)

    Google Scholar 

  13. Knutsson, H.: Representing local structure using tensors. In: 6th Scandinavian Conference on Image Analysis, Oulu, Finland, pp. 244–251. Linköping University Electronic Press (1989)

    Google Scholar 

  14. Knutsson, H., Westin, C.F., Andersson, M.: Representing local structure using tensors II. In: Image Analysis, pp. 545–556. Springer, Berlin (2011)

    Google Scholar 

  15. Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Comput. Graph. 28(6), 801–814 (2004)

    Article  Google Scholar 

  16. Kumari, B., Sreevalsan-Nair, J.: An interactive visual analytic tool for semantic classification of 3d urban lidar point cloud. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 73. ACM, New York (2015)

    Google Scholar 

  17. Lalonde, J.F., Unnikrishnan, R., Vandapel, N., Hebert, M.: Scale selection for classification of point-sampled 3d surfaces. In: Fifth International Conference on 3-D Digital Imaging and Modeling, 2005. 3DIM 2005, pp. 285–292. IEEE, Piscataway (2005)

    Google Scholar 

  18. Light, A., Bartlein, P.J.: The end of the rainbow? Color schemes for improved data graphics. EOS 85(40), 385–391 (2004)

    Google Scholar 

  19. Medioni, G., Tang, C.K., Lee, M.S.: Tensor voting: theory and applications. Proceedings of RFIA, Paris, France 3 (2000)

    Google Scholar 

  20. Mordohai, P., Medioni, G.: Dimensionality estimation, manifold learning and function approximation using tensor voting. J. Mach. Learn. Res. 11, 411–450 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Moreno, R., Pizarro, L., Burgeth, B., Weickert, J., Garcia, M.A., Puig, D.: Adaptation of tensor voting to image structure estimation. In: New Developments in the Visualization and Processing of Tensor Fields, pp. 29–50. Springer, Berlin (2012)

    Google Scholar 

  22. Park, M.K., Lee, S.J., Lee, K.H.: Multi-scale tensor voting for feature extraction from unstructured point clouds. Graph. Model. 74(4), 197–208 (2012)

    Article  Google Scholar 

  23. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graphics Forum 22(3), 281–289 (2003)

    Article  Google Scholar 

  24. Renteln, P.: Manifolds, Tensors, and Forms: An Introduction for Mathematicians and Physicists. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  25. Rottensteiner, F.: Status and further prospects of object extraction from image and laser data. In: 2009 Joint Urban Remote Sensing Event, pp. 1–10. IEEE, Piscataway (2009)

    Google Scholar 

  26. Schultz, T., Kindlmann, G.L.: Superquadric glyphs for symmetric second-order tensors. IEEE Trans. Vis. Comput. Graph. 16(6), 1595–1604 (2010)

    Article  Google Scholar 

  27. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of the Fifth International Conference on Computer Vision, 1995, pp. 902–907. IEEE, Piscataway (1995)

    Google Scholar 

  28. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Computer Vision–ECCV 2010, pp. 356–369. Springer, Berlin (2010)

    Google Scholar 

  29. Tong, W.S., Tang, C.K.: Robust estimation of adaptive tensors of curvature by tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 434–449 (2005)

    Article  Google Scholar 

  30. Wang, S., Hou, T., Li, S., Su, Z., Qin, H.: Anisotropic elliptic PDEs for feature classification. IEEE Trans. Vis. Comput. Graph. 19(10), 1606–1618 (2013)

    Article  Google Scholar 

  31. Weber, C., Hahmann, S., Hagen, H.: Methods for feature detection in point clouds. In: OASIcs-OpenAccess Series in Informatics, vol. 19. Schlöss Dagstuhl-Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  32. Westin, C.F., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.A.: Geometrical diffusion measures for MRI from tensor basis analysis. In: 5th Scientific Meeting and Exhibition of International Society of Magnetic Resonance in Medicine ISMRM ’97. ISMRM (1997)

    Google Scholar 

  33. Yang, B., Dong, Z.: A shape-based segmentation method for mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 81, 19–30 (2013)

    Article  Google Scholar 

  34. Zhang, C., Schultz, T., Lawonn, K., Eisemann, E., Vilanova, A.: Glyph-based comparative visualization for diffusion tensor fields. IEEE Trans. Vis. Comput. Graph. 22(1), 797–806 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Akshay Jindal for running experiments; Srujana Merugu, Ingrid Hotz, T. K. Srikanth, and Vijay Natarajan, as well as several participants of Dagstuhl seminar 16142 for their helpful discussions; and anonymous reviewers for suggestions on improving the manuscript. This work has been partially funded by NRDMS programme of Dept. of Science and Technology, Government of India. The second co-author has been funded by sponsored projects with EMC2-RSA India Pvt.; and FRHS, Bangalore, during her graduate study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Sreevalsan-Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sreevalsan-Nair, J., Kumari, B. (2017). Local Geometric Descriptors for Multi-Scale Probabilistic Point Classification of Airborne LiDAR Point Clouds. In: Schultz, T., Özarslan, E., Hotz, I. (eds) Modeling, Analysis, and Visualization of Anisotropy. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-61358-1_8

Download citation

Publish with us

Policies and ethics