Geometries and Interpolations for Symmetric Positive Definite Matrices

  • Aasa FeragenEmail author
  • Andrea Fuster
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


In this survey we review classical and recently proposed Riemannian metrics and interpolation schemes on the space of symmetric positive definite (SPD) matrices. We perform simulations that illustrate the problem of tensor fattening not only in the usually avoided Frobenius metric, but also in other classical metrics on SPD matrices such as the Wasserstein metric, the affine invariant/Fisher Rao metric, and the log Euclidean metric. For comparison, we perform the same simulations on several recently proposed frameworks for SPD matrices that decompose tensors into shape and orientation. In light of the simulation results, we discuss the mathematical and qualitative properties of these new metrics in comparison with the classical ones. Finally, we explore the nonlinear variation of properties such as shape and scale throughout principal geodesics in different metrics, which affects the visualization of scale and shape variation in tensorial data. With the paper, we will release a software package with Matlab scripts for computing the interpolations and statistics used for the experiments in the paper (Code is available at


  1. 1.
    Alexander, D., Barker, G., Arridge, S.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48(2), 331–340 (2002)CrossRefGoogle Scholar
  2. 2.
    Amari, S.-I., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs. American Mathematical Society, Providence (2000)zbMATHGoogle Scholar
  3. 3.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media, Berlin (2008)zbMATHGoogle Scholar
  4. 4.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean framework for statistics on diffeomorphisms. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI (2006)CrossRefGoogle Scholar
  5. 5.
    Astola, L., Florack, L.: Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging. Int. J. Comput. Vis. 92(3), 325–336 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 111(3), 209–219 (1996)CrossRefGoogle Scholar
  7. 7.
    Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53(1), 221–225 (2005)CrossRefGoogle Scholar
  8. 8.
    Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
     Çetingül, H., Afsari, B., Wright, M., Thompson, P., Vidal, R.: Group action induced averaging for HARDI processing. In: 9th IEEE International Symposium on Biomedical Imaging, ISBI (2012)Google Scholar
  10. 10.
    Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.: Jensen-bregman logdet divergence with application to efficient similarity search for covariance matrices. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2161–2174 (2013)CrossRefGoogle Scholar
  11. 11.
    Ennis, D.B., Kindlmann, G.: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn. Reson. Med. 55(1), 136–146 (2006)CrossRefGoogle Scholar
  12. 12.
    Feragen, A., Lauze, F., Hauberg, S.: Geodesic exponential kernels: when curvature and linearity conflict. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2015)Google Scholar
  13. 13.
    Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23, 995–1005 (2004)CrossRefGoogle Scholar
  14. 14.
    Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp. 87–98. Springer, Berlin (2004)Google Scholar
  15. 15.
    Florack, L., Fuster, A.: Riemann-Finsler Geometry for Diffusion Weighted Magnetic Resonance Imaging, pp. 189–208. Springer, Berlin (2014)Google Scholar
  16. 16.
    Gahm, J.K., Wisniewski, N., Kindlmann, G., Kung, G.L., Klug, W.S., Garfinkel, A., Ennis, D.B.: Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI. Med. Image Comput. Comput. Assist. Interv. 15(2), 494–501 (2012)Google Scholar
  17. 17.
    Goh, A., Lenglet, C., Thompson, P., Vidal, R.: A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry. NeuroImage 56(3), 1181–1201 (2011)CrossRefGoogle Scholar
  18. 18.
    Groisser, D., Jung, S., Schwartzman, A.: Eigenvalue stratification and minimal smooth scaling-rotation curves in the space of symmetric positive-definite matrices. Electron. J. Stat. 11(1), 1092–1159 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New Evolutionary Computation, pp. 75–102. Springer, Berlin (2006)Google Scholar
  20. 20.
    Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.: A random riemannian metric for probabilistic shortest-path tractography. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany (2015)Google Scholar
  21. 21.
    Inglis, B.A., Bossart, E.L., Buckley, D.L., Wirth, E.D., Mareci, T.H.: Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn. Reson. Med. 45(4):580–587 (2001)CrossRefGoogle Scholar
  22. 22.
    Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on the riemannian manifold of symmetric positive definite matrices. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–80. IEEE (2013)Google Scholar
  23. 23.
    Jung, S., Schwartzman, A., Groisser, D.: Scaling-rotation distance and interpolation of symmetric positive-definite matrices. SIAM SIAM J. Matrix Anal. Appl. 36(3), 1180–1201 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kindlmann, G.L., Estépar, R.S.J., Niethammer, M., Haker, S., Westin, C.-F.: Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI (1). Lecture Notes in Computer Science, vol. 4791, pp. 1–9. Springer, Berlin (2007)Google Scholar
  25. 25.
    Levy, J.H., Foskey, M., Pizer, S. M.: Rotational flows for interpolation between sampled surfaces. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2008, Anchorage, AK, USA, 23–28 June, 2008, pp. 1–8 (2008)Google Scholar
  26. 26.
    Moakher, M., Batchelor, P.G.: Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization, pp. 285–298. Springer, Berlin (2006)Google Scholar
  27. 27.
    Peeters, T., Rodrigues, P., Vilanova, A., ter Haar Romeny, B.: Analysis of distance/similarity measures for diffusion tensor imaging. In: Visualization and Processing of Tensor Fields, pp. 113–136. Springer, Berlin (2009)Google Scholar
  28. 28.
    Pflaum, M.: Analytic and Geometric Study of Stratified Spaces. Springer Lecture Notes in Mathematics. Springer, Berlin (2001)zbMATHGoogle Scholar
  29. 29.
    Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.: Probabilistic shortest path tractography in dti using Gaussian process ode solvers. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), Boston (2014)Google Scholar
  30. 30.
    Schwartzman, A., Dougherty, R.F., Taylor, J.E.: False discovery rate analysis of brain diffusion direction maps. Ann. Appl. Stat. 2(1), 153–175 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sra, S.: Positive definite matrices and the s-divergence. Proc. Am. Math. Soc. 144(7), 2787–2797 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Takatsu, A.: Wasserstein geometry of Gaussian measures. Osaka J. Math. 48(4), 1005–1026 (2011)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Tournier, J., Calamante, F., Gadian, D., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)CrossRefGoogle Scholar
  34. 34.
    Tuch, D., Reese, T.G., Wiegell, M., Makris, N., Belliveau, J., Wedeen, V.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Res.Med. 48(4), 577–582 (2002)Google Scholar
  35. 35.
    Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)CrossRefGoogle Scholar
  36. 36.
    Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: European Conference on Computer Vision (ECCV), pp. 589–600 (2006)Google Scholar
  37. 37.
    Wang, Y., Salehian, H., Cheng, G., Vemuri, B.C.: Tracking on the product manifold of shape and orientation for tractography from diffusion MRI. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014, pp. 3051–3056 (2014)Google Scholar
  38. 38.
    Westin, C.-F., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.A.: Geometrical diffusion measures for MRI from tensor basis analysis. In: Proceedings of the 5th Scientific Meeting and Exhibition of ISMRM ’97, p. 1742, Vancouver Canada (1997)Google Scholar
  39. 39.
    Yolcu, C., Memiç, M., Şimşek, K., Westin, C.-F., Özarslan, E.: NMR signal for particles diffusing under potentials: from path integrals and numerical methods to a model of diffusion anisotropy. Phys. Rev. E 93 (2016)Google Scholar
  40. 40.
    Zhang, C., Schultz, T., Lawonn, K., Eisemann, E., Vilanova, A.: Glyph-based comparative visualization for diffusion tensor fields. IEEE Trans. Vis. Comput. Graph. 22(1), 797–806 (2016)CrossRefGoogle Scholar
  41. 41.
    Zhou, D., Dryden, I.L., Koloydenko, A.A., Audenaert, K.M., Bai, L.: Regularisation, interpolation and visualisation of diffusion tensor images using non-euclidean statistics. J. Appl. Stat. 43(5), 943–978 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Mathematics and Computer ScienceEindhoven Technical UniversityEinchovenThe Netherlands

Personalised recommendations