Skip to main content

Reconstruction of Diffusion Anisotropies Using 3D Deep Convolutional Neural Networks in Diffusion Imaging

  • Conference paper
  • First Online:
Modeling, Analysis, and Visualization of Anisotropy

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The reconstruction of neural pathways is a challenging problem in case of crossing or kissing neuronal fibers. High angular resolution diffusion imaging models are required to identify multiple fiber orientations in a voxel. Disadvantage of those models is that they require a multitude of acquired gradient directions, otherwise these models become inaccurate. We present a new approach to derive the fiber orientation distribution function using a Deep Convolutional Neural Network, which remains stable, even if less gradient directions are acquired. In addition, the Convolutional Neural Network is able to improve the signal in a voxel by extracting useful information of surrounding neighboring voxels. Subsequently, the functionality of the network is evaluated using 100 different brain datasets from the Human Connectome Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/. Software available from tensorflow.org

  2. Alexander, D.C., Zikic, D., Zhang, J., Zhang, H., Criminisi, A.: Image Quality Transfer via Random Forest Regression: Applications in Diffusion MRI, pp. 225–232. Springer International Publishing, Cham (2014)

    Google Scholar 

  3. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8(8), 1–8 (2014)

    Google Scholar 

  4. Golkov, V., Dosovitskiy, A., Sämann, P., Sperl, J., Sprenger, T., Czisch, M., Menzel, M., Gómez, P., Haase, A., Brox, T., Cremers, D.: q-Space deep learning for twelve-fold shorter and model-free diffusion MRI scans. In: MICCAI, pp. 37–44. Springer International Publishing, Cham (2015)

    Google Scholar 

  5. Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain. Mapp. 34(11), 2747–2766 (2013)

    Article  Google Scholar 

  6. Koppers, S., Haarburger, C., Merhof, D.: Diffusion MRI signal augmentation - from single shell to multi shell with deep learning. In: MICCAI Workshop on Computational Diffusion MRI. Springer International Publishing, Cham (2016)

    Google Scholar 

  7. Koppers, S., Merhof, D.: Direct estimation of fiber orientations using deep learning in diffusion imaging. In: MICCAI Workshop on Machine Learning in Medical Imaging. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  8. Koppers, S., Merhof, D.: Qualitative Comparison of Reconstruction Algorithms for Diffusion Imaging, chap. 4, pp. 51–67. Der Andere Verlag, Uelvesbüll (2016)

    Google Scholar 

  9. Schultz, T.: Learning a reliable estimate of the number of fiber directions in diffusion MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012: 15th International Conference, Nice, October 1–5, 2012, Proceedings, Part III, pp. 493–500. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Schultz, T., Westin, C.F., Kindlmann, G.: Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010: 13th International Conference, Beijing, September 20–24, 2010, Proceedings, Part I, pp. 674–681. Springer, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007). doi:10.1016/j.neuroimage.2007.02.016

    Article  Google Scholar 

  12. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004). doi:10.1016/j.neuroimage.2004.07.037

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Research Training Group (IRTG 2150) of the German Research Foundation (DFG).

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54 MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Koppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Koppers, S., Friedrichs, M., Merhof, D. (2017). Reconstruction of Diffusion Anisotropies Using 3D Deep Convolutional Neural Networks in Diffusion Imaging. In: Schultz, T., Özarslan, E., Hotz, I. (eds) Modeling, Analysis, and Visualization of Anisotropy. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-61358-1_17

Download citation

Publish with us

Policies and ethics