Skip to main content

Automatic Atlas-Based Segmentation of Brain White Matter in Neonates at Risk for Neurodevelopmental Disorders

  • Conference paper
  • First Online:
Modeling, Analysis, and Visualization of Anisotropy

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Very preterm infants, < 32 weeks gestation, are at high risk for brain injury. Cognitive deficits are often diagnosed at a later stage, since there are no available predictive biomarkers in the neonatal period. The maturation of specific white matter (WM) brain structures is considered a promising early-stage biomarker. With Diffusion Tensor Imaging (DTI ) tractography , an in vivo and non-invasive evaluation of these anatomical structures is possible.

We developed an automatic tractography segmentation pipeline, which allows for maturation assessment of the different segmented WM structures. Our segmentation pipeline is atlas-based , specifically designed for premature neonates at term equivalent age. In order to better make use of global information from tractography , all processing is done in the fiber domain. Segmented fiber bundles are further automatically quantified with respect to volume and anisotropy. Of the 24 automatically segmented neonatal tractographies, only three contained more than 30% mislabeled fibers. Results show no dependency to WM pathology. By automatically segmenting WM, we reduced the user-dependency and bias characteristic of manual methods. This study assesses the structure of the neonatal brain based on an automatic WM segmentation in the fiber domain method using DTI tractography data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://vistalab.stanford.edu/.

  2. 2.

    http://sourceforge.net/projects/viste/.

  3. 3.

    http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.

  4. 4.

    http://sourceforge.net/projects/viste/.

References

  1. Anjari, M., Srinivasan, L., Allsop, J., Hajnal, J., Rutherford, M., Edwards, A., Counsell, S.: Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage 35(3), 1021–1027 (2007)

    Article  Google Scholar 

  2. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 254–267 (1994)

    Article  Google Scholar 

  3. Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J., Cointepas, Y., Duchesnay, E., Le Bihan, D., Hertz-Pannier, L.: Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum. Brain Mapp. 29, 14–27 (2008)

    Article  Google Scholar 

  4. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Med. Image Anal. 13(5), 793–808 (2009)

    Article  Google Scholar 

  5. Frey, B., Dueck, D.: Clustering by passing messages between data points. Science 315, 972 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  7. Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage 117, 124–140 (2015)

    Article  Google Scholar 

  8. Geng, X., Gouttard, S., Sharma, A., Gu, H., Styner, M., Lin, W., Gerig, G., Gilmore, J.H.: Quantitative tract-based white matter development from birth to age 2 years. NeuroImage 61(3), 524–557 (2012)

    Article  Google Scholar 

  9. Glass, H., Bonifacio, S., Shimotake, T., Ferriero, D.: Neurocritical care for neonates. Pediatr. Neurol. - Curr. Treat. Opt. Neurol. 13, 574–589 (2011)

    Article  Google Scholar 

  10. Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Le Bihan, D., Mangin, J.: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage 61, 1083–1099 (2012)

    Article  Google Scholar 

  11. Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D., Calabresi, P., Pekar, J., van Zijl, P., Mori, S.: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage 39, 336–347 (2008)

    Article  Google Scholar 

  12. Huppi, P., Dubois, J.: Diffusion tensor imaging of brain development. In: Seminars in Fetal & Neonatal Medicine, vol. 11, pp. 489–497 (2006)

    Google Scholar 

  13. Jong, M., Verhoeven, M., Baar, A.: School outcome, cognitive functioning, and behavior problems in moderate and late preterm children and adults: a review. In: Seminars in Fetal & Neonatal Medicine, vol. 17, pp. 163–169 (2012)

    Google Scholar 

  14. Kooij, B.: MRI analysis and neurodevelopmental outcome in preterm infants. PhD thesis, Utrecht University (2011)

    Google Scholar 

  15. Labra, N., Guevara, P., Duclap, D., Houenou, J., Poupon, C., Mangin, J.F., Figueroa, M.: Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas. Neuroinformatics 15(1), 71–86 (2017). doi: 10.1007/s12021-016-9316-7

    Article  Google Scholar 

  16. Latal, B.: Prediction of neurodevelopmental outcome after preterm birth. Ped. Neuro 40, 413–419 (2009)

    Article  Google Scholar 

  17. Leemans, A., Jones, D.: A new approach to fully automated fiber tract clustering using affinity propagation. In: ISMRM, p. 17 (2009)

    Google Scholar 

  18. Leemans, A., Sijbers, J., De Backer, S., Vandervliet, E., Parizel, P.: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data. Magn. Reson. Med. 55, 1414–1423 (2006)

    Article  Google Scholar 

  19. Maddah, M., Grimson, W.E.L., Warfield, S.K., Wells, W.M.: A unified framework for clustering and quantitative analysis of white matter fiber tracts. Med. Image Anal. 12(2), 191–202 (2008)

    Article  Google Scholar 

  20. Mayer, A., Zimmerman-Moreno, G., Shadmi, R., Batikoff, A., Greenspan, H.: A supervised framework for the registration and segmentation of white matter fiber tracts. IEEE Trans. Med. Imag. 30, 1 (2011)

    Article  Google Scholar 

  21. Moberts, B., Vilanova, A., van Wijk, J.J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: IEEE Visualization, pp. 65–72 (2005)

    Google Scholar 

  22. Mori, S., Zijl, P.: Fiber tracking: principles and strategies - a technical review. NMR Biomed. 15, 468–480 (2002)

    Article  Google Scholar 

  23. Mori, S., Wakana, S., Nagae-Poetscher, L., Zijl, P.: MRI Atlas of Human White Matter. Elsevier, Amsterdam (2005)

    Google Scholar 

  24. Neil, J., Miller, J., Mukherjee, P., Hüppi, P.S.: Diffusion tensor imaging of normal and injured developing human brain - a technical review. NMR Biomed. 15, 543–552 (2002)

    Article  Google Scholar 

  25. O’Donnell, L., Westin, C.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imag. 26(11), 1562–1575 (2007)

    Article  Google Scholar 

  26. O’Donnell, L., Wells, W., Golby, A., Westin, C.: Unbiased groupwise registration of white matter tractography. In: MICCAI, vol. III, pp. 123–130 (2012)

    Google Scholar 

  27. Olivetti, E., Nguyen, T.B., Garyfallidis, E.: The approximation of the dissimilarity projection. In: 2012 International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 85–88. IEEE, New York (2012)

    Google Scholar 

  28. Powell, M.J.D.: Direct search algorithms for optimization calculations. Acta Numer. 7, 287–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pul, C., Buijs, J., Vilanova, A., Roos, G., Wijn, P.: Infants with perinatal hypoxic ischemia: feasibility of fiber tracking at birth and 3 months. Radiology 240, 203–214 (2006)

    Article  Google Scholar 

  30. Pul, C., Kooij, B., Vries, L., Benders, M., Vilanova, A., Groenendaal, F.: Quantitative fiber tracking in the corpus callosum and internal capsule reveals microstructural abnormalities in preterm infants at term-equivalent age. AJNR Am. J. Neuroradiol. 33, 678–684 (2012)

    Article  Google Scholar 

  31. Ratnarajah, N., Qiu, A.: Multi-label segmentation of white matter structures: application to neonatal brains. NeuroImage 102, 913–922 (2014)

    Article  Google Scholar 

  32. Rose, J., Vassar, R., Cahill-Rowley, K., Guzman, X., Stevenson, D., Barnea-Goraly, N.: Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. NeuroImage 86, 244–256 (2014)

    Article  Google Scholar 

  33. Saigal, S., Doyle, L.: An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371(9608), 261–269 (2008)

    Article  Google Scholar 

  34. Shankaran, S., Barnes, P., Hintz, S., Laptook, A., Zaterka-Baxter, K., McDonald, S., Ehrenkranz, R., Walsh, M., Tyson, J., Donovan, E., Goldberg, R., Bara, R., Das, A., Finer, N., Sanchez, P., Poindexter, B., Van Meurs, K., Carlo, W., Stoll, B., Duara, S., Guillet, R., Higgins, R.: Eunice kennedy shriver national institute of child health and human development neonatal research network.brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 97(6), F398–404 (2012)

    Google Scholar 

  35. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vilanova, A., Berenschot, G., van Pul, C.: DTI visualization with streamsurfaces and evenly-spaced volume seeding. In: Joint Eurographics - IEEE TCVG Symposium on Visualization, pp. 173–182 (2004)

    Google Scholar 

  37. Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993)

    Article  Google Scholar 

  38. Volpe, J.: Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009)

    Article  Google Scholar 

  39. Wakana, S., Jiang, H., Nagae-Poetscher, L., van Zijl, P., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004)

    Article  Google Scholar 

  40. Wang, R., Benner, T., Wedeen, V.: Diffusion toolkit: a software package for diffusion imaging data processing and tractograph. In: ISMRM, vol. 15, p. 3720 (2007)

    Google Scholar 

  41. Wang, X., Grimson, W.E.L., Westin, C.-F.: Tractography segmentation using a hierarchical dirichlet processes mixture model. NeuroImage 54(1), 290–302 (2011)

    Article  Google Scholar 

  42. Wassermann, D., Bloyb, L., Kanterakisb, E., Vermab, R., Derichea, R.: Unsupervised white matter fiber clustering and tract probability map generation: applications of a gaussian process framework for white matter fibers. NeuroImage 15(1), 228–241 (2010)

    Article  Google Scholar 

  43. Westin, C.-F., Maier, S., Khidhir, B., Everett, P., Jolesz, F., Kikinis, R.: Image processing for diffusion tensor magnetic resonance imaging. In: MICCAI. Lecture Notes in Computer Science, vol. 1679, pp. 441–452. Springer, New York (1999)

    Google Scholar 

  44. Woodward, L., Anderson, P., Austin, N., Howard, K., Inder, T.: Neonatal mri to predict neurodevelopmental outcomes in preterm infants. New Engl. J. Med. 355(7), 685–694 (2006)

    Article  Google Scholar 

  45. Zhai, G., Lin, W., Wilber, K., Gerig, G., Gilmore, J.: Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-t head-only mr imaging unit. Radiology 229, 673–681 (2003)

    Article  Google Scholar 

  46. Zvitia, O., Mayer, A., Shadmi, R., Miron, S., Greenspan, H.: Co-registration of white matter tractographies by adaptive-mean-shift and Gaussian mixture modeling. IEEE Trans. Med. Imag. 29(1), 132–145 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Floris Groenendaal, Linda de Vries, and Manon Benders, that we are granted the re-use of the fiber atlas that part of our group developed in a previous study together with the Department of Neonatology, Wilhelmina Children’s Hospital/University Medical Center Utrecht. In addition, we thank Lauren O’Donnell for providing us with their fiber registration software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vilanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fonseca, L. et al. (2017). Automatic Atlas-Based Segmentation of Brain White Matter in Neonates at Risk for Neurodevelopmental Disorders. In: Schultz, T., Özarslan, E., Hotz, I. (eds) Modeling, Analysis, and Visualization of Anisotropy. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-61358-1_15

Download citation

Publish with us

Policies and ethics