Edge Detection in Diffusion Weighted MRI Using a Tangent Curve Similarity Metric

  • Zi’Ang Ding
  • Xavier TricocheEmail author
  • Yaniv Gur
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


We present a technique to automatically characterize the geometry of important anatomical structures in diffusion weighted MRI (DWI) data. Our approach is based on the interpretation of diffusion data as a superimposition of multiple line fields that each form a continuum of space filling curves. Using a dense tractography computation, our method quantifies the spatial variations of the geometry of these curves and use the resulting measure to characterize salient structures as edges. Anatomically, these structures have a boundary-like nature and yield a clear picture of major fiber bundles. In particular, the application of our algorithm to high angular resolution imaging (HARDI) data yields a precise geometric description of subtle anatomical configurations associated with the local presence of multiple fiber orientations. We evaluate our technique and study its robustness to noise in the context of a phantom dataset and present results obtained with two diffusion weighted brain images.



This work was made possible in part by a NSF CAREER Program Award No. 1150000: Efficient Structural Analysis of Multivariate Fields for Scalable Visualizations. This support is here gratefully acknowledged.


  1. 1.
    Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48(2), 331–340 (2002)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Mag. Reson. Ser. B 111(3), 209–219 (1996)CrossRefGoogle Scholar
  3. 3.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)CrossRefGoogle Scholar
  4. 4.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–32 (2000)CrossRefGoogle Scholar
  5. 5.
    Brun, A., Park, H.-J., Knutsson, H., Westin, C.-F.: Coloring of DT-MRI fiber traces using laplacian eigenmaps. In: Diaz, R.M., Arencibia, A.Q. (eds.) Computer Aided Systems Theory (EUROCAST’03). Lecture Notes in Computer Science 2809, pp. 564–572, Las Palmas de Gran Canaria, Spain, 24–28 Feb 2003. Springer, Berlin (2003)Google Scholar
  6. 6.
    Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.-F.: Clustering fiber tracts using normalized cuts. In: Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’04). Lecture Notes in Computer Science, pp. 368–375, Rennes – Saint Malo, France, Sept 2004Google Scholar
  7. 7.
    Calamante, F., Tournier, J.-D., Smith, R.E., Connelly, A.: A generalised framework for super-resolution track-weighted imaging. NeuroImage 59(3), 2494–2503 (2012)CrossRefGoogle Scholar
  8. 8.
    Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. 96(18), 10422–10427 (1999)CrossRefGoogle Scholar
  9. 9.
    Daducci, A., Caruyer, E., Descoteaux, M., Houde, J.-C., Thiran, J.-P.: Hardi reconstruction challenge. In: IEEE ISBI (2013)Google Scholar
  10. 10.
    Delmarcelle, T., Hesselink, L.: The topology of symmetric, second-order tensor fields. In: Proceedings of IEEE Visualization 1994, pp. 140–147. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
  11. 11.
    Eberly, D.: Ridges in Image and Data Analysis. Kluwer Academic Publishers, Boston (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Frank, L.R.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med 47, 1083–1099 (2002)CrossRefGoogle Scholar
  13. 13.
    Furst, J.D., Pizer, S.M.: Marching ridges. In: Signal and Image Processing, pp. 22–26 (2001)Google Scholar
  14. 14.
    Hess, C.P., Mukherjee, P., Han, E.T., Xu, D., Vigneron, D.B.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56(1), 104–117 (2006)CrossRefGoogle Scholar
  15. 15.
    Hlawatsch, M., Vollrath, J.E., Sadlo, F., Weiskopf, D.: Coherent structures of characteristic curves in symmetric second order tensor fields. IEEE Trans. Vis. Comput. Graph. 17(6), 781–794 (2011)CrossRefGoogle Scholar
  16. 16.
    Hlawitschka, M., Scheuermann, G.: Hot-lines: tracking lines in higher order tensor fields. In: IEEE Visualization, 2005. VIS 05, pp. 27–34, Oct. 2005CrossRefGoogle Scholar
  17. 17.
    Hlawitschka, M., Garth, C., Tricoche, X., Kindlmann, G., Scheuermann, G., Joy, K.I., Hamann, B.: Direct visualization of fiber information by coherence. Int. J. Comput. Assist. Radiol. Surg. 5(2), 125–131 (2010)CrossRefGoogle Scholar
  18. 18.
    Holmes, A.A., Scollan, D.F., Winslow, R.L.: Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn. Reson. Med. 44(1), 157–61 (2000)CrossRefGoogle Scholar
  19. 19.
    Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. 274(5 Pt 2), H1627–1634 (1998). 0002-9513 (Print) Journal Article Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.Google Scholar
  20. 20.
    Jiao, F., Gur, Y., Johnson, C.R., Joshi, S.: Detection of crossing white matter fibers with high-order tensors and rank-k decompositions. In: Information Processing in Medical Imaging, pp. 538–549. Springer, London (2011)Google Scholar
  21. 21.
    Jones, D.K.: Studying connections in the living human brain with diffusion MRI. Cortex 44(8), 936–952 (2008)CrossRefGoogle Scholar
  22. 22.
    Jones, D.K., Simmons, A., Williams, S.C.R., Horsfield, M.A.: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med. 42(1), 37–41 (1999)CrossRefGoogle Scholar
  23. 23.
    Kindlmann, G., Tricoche, X., Westin, C.-F.: Anisotropy creases delineate white matter structure in diffusion tensor MRI. In: Proceedings of Medical Imaging Computing and Computer-Assisted Intervention, MICCAI ’06 (2006)Google Scholar
  24. 24.
    Kindlmann, G., Ennis, D.B., Whitaker, R.T., Westin, C.-F.: Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans. Med. Imaging 26(11), 1483–1499 (2007)CrossRefGoogle Scholar
  25. 25.
    Kindlmann, G., Tricoche, X., Westin, C.-F.: Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Med. Image Anal. 11(5), 492–502 (2007)CrossRefGoogle Scholar
  26. 26.
    Lazar, M.: Mapping brain anatomical connectivity using white matter tractography. NMR in Biomed. 23(7), 821–835 (2010)CrossRefGoogle Scholar
  27. 27.
    Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A., et al.: White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 18(4), 306–321 (2003)CrossRefGoogle Scholar
  28. 28.
    Liang, X., Wang, J., Lin, Z., Zhang, C.: White matter fiber tract segmentation using nonnegative matrix factorization. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009, pp. 1–4 (2009)Google Scholar
  29. 29.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 77–116 (1998)Google Scholar
  30. 30.
    Mai, S.T., Goebl, S., Plant, C.: A similarity model and segmentation algorithm for white matter fiber tracts. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 1014–1019 (2012)Google Scholar
  31. 31.
    Mori, S., Crain, B.J., Chacko, V.P., Van Zijl, P.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)CrossRefGoogle Scholar
  32. 32.
    O’Donnell, L., Kubicki, M., Shenton, M.E., Dreusicke, M., Grimson, W.E.L., Westin, C.-F.: A method for clustering white matter fiber tracts. AJNR Am. J. Neuroradiol. 27(5), 1032–1036 (2006)Google Scholar
  33. 33.
    Schultz, T., Seidel, H.-P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Vis.) 14(6), 1635–1642 (2008)Google Scholar
  34. 34.
    Schultz, T., Seidel, H.-P.: Using eigenvalue derivatives for edge detection in DT-MRI data. In: Rigoll, G. (ed.) Pattern Recognition. Lecture Notes in Computer Science, vol. 5096, pp. 193–202. Springer, New York (2008)Google Scholar
  35. 35.
    Schultz, T., Theisel, H., Seidel, H.-P.: Topological visualization of brain diffusion MRI data. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Vis.) 13(6), 1496–1503 (2007)Google Scholar
  36. 36.
    Scollan, D.F., Holmes, A., Winslow, R., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. 275, 2308–2318 (1998)Google Scholar
  37. 37.
    Tournier, J.-D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23, 1176–1185 (2004)CrossRefGoogle Scholar
  38. 38.
    Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007)CrossRefGoogle Scholar
  39. 39.
    Travers, B.G., Adluru, N., Ennis, C., Tromp, D.P.M., Destiche, D., Doran, S., Bigler, E.D., Lange, N., Lainhart, J.E., Alexander, A.L.: Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 5(5), 289–313 (2012)CrossRefGoogle Scholar
  40. 40.
    Tricoche, X., Kindlmann, G., Westin, C.-F.: Invariant crease lines for topological and structural analysis of tensor fields. IEEE Trans. Vis. Comput. Graph. 14(6), 1627–1634 (2008)CrossRefGoogle Scholar
  41. 41.
    Tseng, W.-Y.I., Wedeen, V.J., Reese, T.G., Smith, R.N., Halpern, E.F.: Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J. Mag. Reson. Imaging 17(1), 31–42 (2003)CrossRefGoogle Scholar
  42. 42.
    Tuch, D.S.: Diffusion MRI of complex tissue structure. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, Jan 2002Google Scholar
  43. 43.
    Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: Clustering fiber tracts using normalized cuts. In: Proceeding of the 7th Anmual Meeting of ISMRM, p. 321, Philadephia, PA, 1999Google Scholar
  44. 44.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003)CrossRefGoogle Scholar
  45. 45.
    van de Weijer, J., Gevers, Th.: Tensor based feature detection for color images. In: Color and Imaging Conference, vol. 2004, no. 1, pp. 100–105. Society for Imaging Science and Technology (2004)Google Scholar
  46. 46.
    Wakana, S., Jiang, H., Nagae-Poetscher, L.M., Van Zijl, P.C.M., Mori, S.: Fiber tract–based atlas of human white matter anatomy 1. Radiology 230(1), 77–87 (2004)CrossRefGoogle Scholar
  47. 47.
    Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: Proceedings of the Conference on Visualization’99: Celebrating Ten Years, pp. 249–253. IEEE Computer Society Press, Los Alamitos, CA (1999)Google Scholar
  48. 48.
    Zhang, S., Demiralp, C., Laidlaw, D.H.: Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Trans. Vis. Comput. Graph. 9(4), 454–462 (2003)CrossRefGoogle Scholar
  49. 49.
    Zheng, X., Parlett, B.N., Pang, A.: Topological lines in 3D tensor fields and discriminant hessian factorization. IEEE Trans. Vis. Comput. Graph. 11(4), 395–407 (2005)CrossRefGoogle Scholar
  50. 50.
    Zhang, S., Peng, H., Dawe, R.J., Arfanakis, K.: Enhanced icbm diffusion tensor template of the human brain. Neuroimage 54(2), 974–984 (2011)CrossRefGoogle Scholar
  51. 51.
    Zhukov, L., Barr, A.: Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI. In: Proceedings of IEEE Visualization 2002, pp. 387–394 (2002)Google Scholar
  52. 52.
    Zhukov, L., Barr, A.H.: Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI. In: IEEE Visualization, 2002. VIS 2002, pp. 387–394. IEEE, Piscataway, NJ (2002)Google Scholar
  53. 53.
    Zhukov, L., Barr, A.: Heart -muscle fiber reconstruction from diffusion tensor MRI. In: Proceedings of IEEE Visualization 2003, pp. 597–602 (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.IBM ResearchSan JoseUSA

Personalised recommendations