Pathogen-Driven Proteomic Changes in Hemolymph of Nuclear Polyhedrosis Virus-Infected Silkworm Bombyx mori L.



Viral infections are distinct in the capacity of the viruses to overtake the host’s protein synthesis machinery and regulate it for the viral replication. Interaction and infection process of BmNPV in its host Bombyx mori is an important step to understand host-pathogen interaction studies. In present research work, we have screened the BmNPV isolate from the grasserie-infected silkworms from rearing fields of Central Karnataka, India. Isolation, purification, and characterization of the BmNPV virus were done by sucrose density gradient centrifugation, scanning electron microscopy, and SDS-PAGE of the occlusion bodies (OBs). Comparative proteomic analysis revealed drastic up- and downregulation of several proteins in control and infected silkworms. The role of various proteins in comparison with reported proteins responsible for disease infection was elucidated.


Bombyx mori BmNPV Hemolymph proteins SDS-PAGE 2-Dimentional gel electrophoresis Host-pathogen interactions 


  1. Belyavskyi M, Braunagel SC, Summers MD (1998) The structural protein ODV-EC27 of Autographa californica nucleopolyhedrovirus is a multifunctional viral cyclin. Proc Natl Acad Sci U S A 95(19):11205–11210CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bilimoria SL (1991) The biology of nuclear polyhedrosis viruses. In: Kurstak E (ed) Viruses of invertebrates. Marcel Dekker, New York, pp 1–72. 360pGoogle Scholar
  3. Braunagel SC, Elton DM, Ma H, Summers MD (1996) Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope: ODV-E56. Virology 217:97–110CrossRefPubMedGoogle Scholar
  4. Braunagel SC, Summers MD (2007) Molecular biology of the Baculovirus occlusion-derived virus envelope. Curr Drug Targets 8:1084–1095CrossRefPubMedGoogle Scholar
  5. Cheng R-L, Xu Y-P, Zhang C-X (2012) Genome sequence of a Bombyx mori nucleopolyhedrovirus strain with cubic occlusion bodies. J Virol 86(18):10245CrossRefPubMedPubMedCentralGoogle Scholar
  6. Choi SS, Rhee WJ, Park TH (2008) Inhibition of human cell apoptosis by silkworm hemolymph. Biotechnol Prog 18:874–878CrossRefGoogle Scholar
  7. Clemens MJ, Elia A (1997) The double stranded RNA-dependent protein kinase PKR: structure and function. J Interf Cytokine Res 17(9):503–524CrossRefGoogle Scholar
  8. Deng F, Wang R, Fang M, Jiang Y, Xu X, Wang H, Chen X, Arif BM, Lin G, Wang H, Zhihong H (2007) Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100. J Virol 81(17):9377–9385CrossRefPubMedPubMedCentralGoogle Scholar
  9. Du X, Thiem SM (1997) Characterization of host range factor 1(hrf-1) expression in Lymantria dispar Multinucleopolyhedrovirus and recombinant Autographa californica infected IPLB-Ld652Y cells. Virology 227:420–430CrossRefPubMedGoogle Scholar
  10. Engelhard EK (1994) The insect tracheal system: a conduit for the systemic spread of Autographa californica multinuclear polyhedrosis virus. Proc Natl Acad Sci U S A 91:3224–3227CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fang M, Dai X, Theilmann DA (2007) Autographa californica multiple nucleopolyhedrovirus EXON0 (ORF141) is required for efficient egress of nucleocapsids from the nucleus. J Virol 81(18):9859–9869CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gilbert LI, Chino H (1974) Transport of lipids in insects. J Lipid Res 15:439–456PubMedGoogle Scholar
  13. Goley ED (2006) Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314(5798):464–467CrossRefPubMedGoogle Scholar
  14. Granados RR, Lawler KA (1981) In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108:297–308CrossRefPubMedGoogle Scholar
  15. Gross CH, Russell RLQ, Rohrmann GF (1994) The Orgyia pseudotsugata baculovirus p10 and polyhedron envelope protein genes: analysis of their relative expression levels and role in polyhedron structure. J Gen Virol 75:1115–1123CrossRefPubMedGoogle Scholar
  16. Gururaj CS, Sekharappa BM, Sarangi SK (1999) Effect of BmNPV infection on the digestive enzyme activity in the silkworm, Bombyx mori L. Indian J Seric 38(2):102–106Google Scholar
  17. Hou Y, Zou Y, Wang F, Gong J, Zhong X, Xia Q, Zhao P (2010) Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages. Proteome Sci 8(45):1–10Google Scholar
  18. Kajiwara H, Imamaki A, Nakamura M, Mita K, Xia Q, Ishizaka M (2009) Proteome analysis of silkworm 2. Hemolymph. J Electrophor 53:27–31CrossRefGoogle Scholar
  19. Kishimoto A, Nakato H, Izumi S, Tomino S (1999) Biosynthesis of major plasma proteins in the primary culture of fat body cells from the silkworm, Bombyx mori. Cell Tissue Res 297:329–335CrossRefPubMedGoogle Scholar
  20. Kobayashi M, Kotake M, Sugimori H, Nagamine T, Kajiura Z (1990) Identification of virus specific polypeptides and translatable mRNAs in the isolated pupal abdomens of the silkworm, Bombyx mori infected with nuclear polyhedrosis. J Invertebr Pathol 55(1):52–60CrossRefPubMedGoogle Scholar
  21. Kyung HS, Su JJ, Young RS, Seok WK, Sung SH (2006) Identification of up-regulated proteins in the haemolymph of immunized Bombyx mori larvae. Comp Biochem Physiol D1:260–266Google Scholar
  22. Lehane MJ, Aksoy S, Levashina (2004) Blood immune responses and parasite transmission in insects. Trends Parasitol 29(9):433–439CrossRefGoogle Scholar
  23. Lepore LS, Roelvink PR, Granados RR (1996) Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease. J Invertebr Pathol 68(2):131–140CrossRefPubMedGoogle Scholar
  24. Li X-h, Wu X-f, Yue W-f, Liu J-m, Li G-l, Miao Y-g (2006) Proteomic analysis of the silkworm (Bombyx mori L.) Hemolymph during developmental stage. J Proteome Res 5(10):2809–2814CrossRefPubMedGoogle Scholar
  25. Lim DS, Ko SH, Kim SJ, Park YJ, Park JH, Lee WY (2002) Photoinactivation of vesicular stomatitis virus by a photodynamic agent, chlorophyll derivatives from silkworm excreta. J Photochem Photobiol B 67(3):149–156CrossRefPubMedGoogle Scholar
  26. Lin GY, Zhong J, Wang XZ (2000) Abnormal formation of polyhedra resulting from a single mutation in the polyhedrin gene of Autographa californica multicapsid nucleopolyhedrovirus. J Invertebr Pathol 76(1):13–19CrossRefPubMedGoogle Scholar
  27. Liu X, Chen K, Cai K, Yao Q (2008) Determination of protein composition and host-derived proteins of Bombyx mori Nucleopolyhedrovirus by 2-dimensional electrophoresis and mass spectrometry. Intervirology 51:369–376CrossRefPubMedGoogle Scholar
  28. McCarthy CB, Theilmann DA (2008) AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene. Virology 375:277–291CrossRefPubMedGoogle Scholar
  29. Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (1995) Virus taxonomy. Classification and nomenclature of viruses. Sixth Report of the International Committee on Taxonomy of Viruses. Springer, Wien New York, Arch Virol, 10Google Scholar
  30. Nagata M, Kobayashi M (1990) Quantitative changes in storage proteins during larval development of the silkworm, Bombyx mori. J Seric Sci Jpn 59:461–468Google Scholar
  31. Nakahara Y, Shimura S, Ueno C, Kanamori Y, Mita K, Kiuchi T, Kamimura M (2009) Purification and characterization of silkworm hemocytes by flow cytometry. Dev Comp Immunol 33:439–448CrossRefPubMedGoogle Scholar
  32. Nakazawa H, Tsuneishi E, Ponnuvel KM, Furukawa S, Asaoka A, Tanaka H, Ishibashi J, Yamakawa M (2004) Antiviral activity of a serine protease from the digestive juice of B. mori larvae against NPV. Virology 321(1):154–162CrossRefPubMedGoogle Scholar
  33. Nie Y, Fang M, Theilmann DA (2009) AcMNPV AC16 (DA26, BV/ODV-E26) regulates the levels of IE0 and IE1 and binds to both proteins via a domain located within the acidic transcriptional activation domain. Virology 385(2):484–495CrossRefPubMedGoogle Scholar
  34. Ohkawa T, Volkman LE, Welch MD (2010) Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol 190(2):187–195CrossRefPubMedPubMedCentralGoogle Scholar
  35. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. Journal of biological chemistry 250(10):4007–4021Google Scholar
  36. Palhan VB, Gopinathan KP (1996) Characterization of a local isolate of Bombyx mori nuclear polyhedrosis virus. Curr Sci 70(2):147–153Google Scholar
  37. Perera O, Green T B, Stevens S M, White S, Becnel JJ (2007) Proteins associated with Culex nigripalpus nucleopolyhedrovirus occluded virions. Journal of virology 81(9):4585–4590Google Scholar
  38. Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J, Tanaka H, Yamakawa M (2003) A lipase isolated from the silkworm shows antiviral activity against NPV. J Virol 77(19):10725–10729CrossRefPubMedPubMedCentralGoogle Scholar
  39. Prudhomme JC, Couble P (2002) Perspectives in silkworm transgenesis. Curr Sci 83(4):432–438Google Scholar
  40. Rohrmann GF (2011) Baculovirus Molecular Biology, 2nd edn. National Center for Biotechnology Information (US), BethesdaGoogle Scholar
  41. Russell RLQ, Rohrmann GF (1993) A 25 kilo dalton protein is associated with the envelopes of occluded baculovirus virions. Virology 195:532–540CrossRefPubMedGoogle Scholar
  42. Russell RLQ, Funk CJ, Rohrmann GF (1997) Association of a baculovirus encoded protein with the capsid basal region. Virology 227:142–152CrossRefPubMedGoogle Scholar
  43. Russell RLQ, Rohrmann GF (1990) A baculovirus polyhedron envelope protein: immunogold localization in infected cells and mature polyhedra. Virology 174:177–184CrossRefPubMedGoogle Scholar
  44. Takasu Y, Yamada H, Saito H, Tsubouchi K (2005) Characterization of Bombyx mori sericins by the partial amino acid sequences. J Insect Biotechnol Sericol 74:103–109Google Scholar
  45. Terenius O (2004) Anti-parasitic and anti-viral immune responses in insects. Ph. D Thesis. Department of Genetics, Microbiology and Toxicology, Stockholm University, StockholmGoogle Scholar
  46. Ujita M, Katsuno Y, Kawachi I, Ueno Y, Banno Y, Fujii H, Hara A (2005) Glucan-binding activity of silkworm 30-kDa apolipoprotein and its involvement in defense against fungal infection. Biosci Biotech Bioch 69:1178–1185CrossRefGoogle Scholar
  47. Vanarsdall AL, Pearson MN, Rohrmann GF (2007) Characterization of baculovirus constructs lacking either the Ac 101, Ac 142, or the Ac 144 open reading frame. Virology 367:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  48. Vigdorovich V, Miller AD, Strong RK (2007) Ability of hyaluronidase 2 to degrade extracellular hyaluronan is not required for its function as a receptor for jaagsiekte sheep retrovirus. J Virol 8(7):3124–3129CrossRefGoogle Scholar
  49. Wang P, Granados RR (1997) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci U S A 94(13):6977–6982CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang R (2010) Proteomics of the Autographa californica Nucleopolyhedrovirus budded Virions. J Virol 84:7233–7242CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wang Y (1995) Interaction of p53 with its consensus DNA-binding site. Mol Cell Biol 15(4):2157–2165CrossRefPubMedPubMedCentralGoogle Scholar
  52. Watanabe H (1986) Resistance of the silkworm, Bombyx mori to viral infections. Agric Ecosyst Environ 15(2–3):131–139CrossRefGoogle Scholar
  53. Wu W (2006) Autographa californica multiple nucleopolyhedrovirus nucleocapsid assembly is interrupted upon deletion of the 38K gene. J Virol 80(23):11475–11485CrossRefPubMedPubMedCentralGoogle Scholar
  54. Xu H (2008) Bombyx mori nucleopolyhedrovirus ORF56 encodes an occlusion-derived virus protein and is not essential for budded virus production. J Gen Virol 89:1212–1219CrossRefPubMedGoogle Scholar
  55. Yang S, Miller LK (1998) Expression and mutational analysis of the baculovirus very late factor 1 (vlf-1) gene. Virology 245(1):99–109CrossRefPubMedGoogle Scholar
  56. Zhang JH (2005) Effects of Ac150 on virulence and pathogenesis of Autographa californica multiple nucleopolyhedrovirus in noctuid hosts. J Gen Virol 86(6):1619–1627CrossRefPubMedGoogle Scholar
  57. Zhang P, Aso Y, Jikuya H, Kusakabe T, Lee JM, Kawaguchi Y, Yamamoto K, Banno Y, Fujii H (2007) Proteomic profiling of silkworm skeletal proteins during larval-pupal metamorphosis. J Proteome Res 6:2295–2303CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and MicrobiologyKarnatak UniversityDharwadIndia
  2. 2.Department of ZoologyKarnatak UniversityDharwadIndia

Personalised recommendations