Advertisement

Nanotechnology and Its Impact on Insects in Agriculture

  • Prashant Singh
  • Kamlesh Kumari
  • Vijay K. Vishvakarma
  • Sangita Aggarwal
  • Ramesh Chandra
  • Anita Yadav
Chapter

Graphical Abstract

Nanoscience and nanotechnology is considered as an interdisciplinary science wherein it deals with chemistry, physics, biology, agriculture, civil and many more shower interrelationship. The term nanoscience basically has been used to understand and discuss the behaviour of any material at very small scale which cannot be seen by our naked eyes. In other way, it is at nanoscale of a material in any one or more than one dimension (1–100 nm). It reflects from its name. Researchers and academicians are also trying to correlate the industrial chemicals, agriculture and pesticides together to understand a new term “nanopesticides”. The perception of researchers is that the nanotechnology and nanoscience promises or commits huge benefits like health care, materials, biology, medicines, etc. In the present scenario of the world, a number of industries and disciplines have focused on the potency of nanomaterials. The important key in nanotechnology to think about the use of nanomaterials is that nanomaterials should not harm in any way as the risk cannot be evaluated. In this chapter, various nanoparticles, their synthesis and applications in different areas and further how they can be used in agricultural science have been discussed.

Keywords

Nanoparticles Agriculture Synthesis Human and mammal health risk 

References

  1. Abreu FOMS, Oliveira EF, Paula HCB, de Paula RCM (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 89(4):1277–1282PubMedCrossRefGoogle Scholar
  2. Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217–225PubMedCrossRefGoogle Scholar
  3. Ajeet K, Prashant S, Amit S, Arnab D, Ramesh C, Subho M (2008) Nano-sized copper as an efficient catalyst for one pot three component synthesis of thiazolidine-2, 4-dione derivatives. Catal Commun 10:17–22CrossRefGoogle Scholar
  4. Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68(2):158–163PubMedCrossRefGoogle Scholar
  5. Balaji AP, Mishra P, Suresh Kumar RS, Ashu A, Margulis K, Magdassi S, Mukherjee A, Chandrasekaran N (2015) The environmentally benign form of pesticide in hydrodispersive nanometric form with improvedefficacyagainstadultmosquitoesatlowexposureconcentrations. Bull Environ Contam Toxicol 95:734–739PubMedCrossRefGoogle Scholar
  6. Balaji AP, Sastry TP, Manigandan S, Mukherjee A, Chandrasekaran N (2017) Environmental benignity of a pesticide in soft colloidal hydrodispersive nanometric form with improved toxic precision towards the target organisms than non-target organisms. Sci Total Environ 579:190–201PubMedCrossRefGoogle Scholar
  7. Belz J, Castilla-Ojo N, Sridhar S, Kumar R (2017) Radiosensitizing silica nanoparticles encapsulating docetaxel for treatment of prostate cancer. Methods Mol Biol 1530:403–409PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brunel FE, Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92(2):1348–1356PubMedCrossRefGoogle Scholar
  10. Buonasera K, D’Orazio G, Fanali S, Dugo P, Mondello L (2009) Separation of organophosphorus pesticides by using nano-liquid chromatography. J Chromatogr A 1216:3970–3976PubMedCrossRefGoogle Scholar
  11. Chaichi MJ, Alijanpour SO (2014) Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H2O2-Cu2+/IL chemiluminescence system. J Photochem Photobiol B 140:41–48Google Scholar
  12. Choudhary SR, Pradhan S, Goswami A (2012) Preparation and characterisation of acephate nano-encapsulated complex. Nanosci Methods 1(1):9–15CrossRefGoogle Scholar
  13. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.) J Pest Sci 84(1):99–105CrossRefGoogle Scholar
  14. Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256CrossRefGoogle Scholar
  15. Diaz-Blancas V, Medina DI, Padilla-Ortega E, Bortolini-Zavala R, Olvera-Romero M, LunaBarcenas G (2016) Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules 21:1271CrossRefGoogle Scholar
  16. Ebrahimi M, Es’haghi Z, Samadi F, Hosseini MS (2011) Ionic liquid mediated solgel sorbents for hollow fiber solidphase microextraction of pesticide residues in water and hair samples. J Chromatogr A 1218:8313–8321PubMedCrossRefGoogle Scholar
  17. Efremenko EN, Lyagin IV, Klyachko NL, Bronich T, Zavyalova NV, Jiang Y, Kabanov AV (2017) A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. J Control Release 247:175–181PubMedCrossRefGoogle Scholar
  18. Ellison PA, Chen F, Goel S, Barnhart TE, Nickles RJ, DeJesus OT, Cai W (2017) Intrinsic and stable conjugation of thiolated mesoporous silica nanoparticles with radioarsenic. ACS Appl Mater Interfaces 9(8):6772–6781.  https://doi.org/10.1021/acsami.6b14049 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803PubMedCrossRefGoogle Scholar
  20. Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6:e21442PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ginjupalli GK, Baldwin WS (2013) The time- and age-dependent effects of the juvenile hormone analog pesticide, pyriproxyfen on Daphnia magna reproduction. Chemosphere 92:1260–1266PubMedPubMedCentralCrossRefGoogle Scholar
  22. Grillo R, dos Santos NZ, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(epsilon-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9PubMedCrossRefGoogle Scholar
  23. Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234PubMedCrossRefGoogle Scholar
  24. Hake H, Ben-Zur R, Schechter I, Anders A (2007) Fast optical assessment of pesticide coverage on plants. Anal Chim Acta 596:1–8PubMedCrossRefGoogle Scholar
  25. Herrero MA, Guerra J, Myers VS, Gomez MV, Crooks RM, Prato M (2010) Gold dendrimer encapsulated nanoparticles as labeling agents for multiwalled carbon nanotubes. ACS Nano 4:905–912PubMedCrossRefGoogle Scholar
  26. Hu X, Zheng P, Meng G, Huang Q, Zhu C, Han F, Huang Z, Li Z, Wang Z, Wu N (2016) An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide. Nanotechnology 27:384001PubMedCrossRefGoogle Scholar
  27. Hubert J, Stejskal V, Munzbergova Z, Hajslova J, Arthur FH (2007) Toxicity and efficacy of selected pesticides and new acaricides to stored product mites (Acari: Acaridida). Exp Appl Acarol 42:283–290PubMedCrossRefGoogle Scholar
  28. Hummel HE, Langner SS, Eisinger MT (2013) Pheromone dispensers, including organic polymer fibers, described in the crop protection literature: comparison of their innovation potential. Commun Agric Appl Biol Sci 78:233–252PubMedGoogle Scholar
  29. Hwang IC, Kim TH, Bang SH, Kim KS, Kwon HR, Seo MJ et al (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agric Kyushu Univ 56(1):33–40Google Scholar
  30. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027PubMedCrossRefGoogle Scholar
  31. Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756PubMedCrossRefGoogle Scholar
  32. Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA et al (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102(1):19–29CrossRefGoogle Scholar
  33. Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR (2016) Design and evaluation of an apta-nano-sensor to detect Acetamiprid in vitro and in silico. J Biomol Struct Dyn 34:2505–2517PubMedCrossRefGoogle Scholar
  34. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235PubMedCrossRefGoogle Scholar
  36. Kah M, Machinski P, Koerner P, Tiede K, Grillo R, Fraceto LF, Hofmann T (2014) Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ Sci Pollut Res Int 21:11699–11707PubMedCrossRefGoogle Scholar
  37. Kah M, Weniger AK, Hofmann T (2016) Impacts of (nano) formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environ Sci Technol 50(20):10960–10967PubMedCentralCrossRefGoogle Scholar
  38. Kalayou S, Granum C, Berntsen HF, Groseth PK, Verhaegen S, Connolly L, Brandt I, de Souza GA, Ropstad E (2016) Label-free based quantitative proteomics analysis of primary neonatal porcine Leydig cells exposed to the persistent contaminant 3-methylsulfonyl-DDE. J Proteome 137:68–82CrossRefGoogle Scholar
  39. Kamlesh K, Prashant S, Gopal M (2012a) Synthesis and characterization of rosiglitazone loaded magnetic nanopolymer. Int J Green Nanotechnol 4:339–344CrossRefGoogle Scholar
  40. Kamlesh K, Prashant S, Gopal M (2012b) A facile one pot synthesis of collagen protected gold nanoparticles using Na–malanodialdehyde. Mater Lett 79:199–201CrossRefGoogle Scholar
  41. Kamlesh K, Prashant S, Gopal KM (2014) Ionic liquid stabilized Metal NPs & their role a potent catalyst. In: Tiwari A (ed) Advanced Materials. WILEY-Scrivener Publisher, Chapter 14, 549–564Google Scholar
  42. Kamlesh K, Prashant S, Chandra M (2017) Metal (Au, Ag & Cu) NPs in ionic liquid: Potential Catalytic system for organic reactions. J Nanomed Nanotechnol 8(6):1–11Google Scholar
  43. Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, YM Y et al (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541CrossRefGoogle Scholar
  44. Kaushik P, Shakil NA, Kumar J, Singh MK, Yadav SK (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48(8):677–685PubMedCrossRefGoogle Scholar
  45. Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP (2016) Budding trends in integrated pest management using advanced micro- and nano-materials: challenges and perspectives. J Environ Manag 184:157–169CrossRefGoogle Scholar
  46. Khodadoust S, Ghaedi M, Hadjmohammadi MR (2013) Dispersive nano solid material-ultrasound assisted microextraction as a novel method for extraction and determination of bendiocarb and promecarb: response surface methodology. Talanta 116:637–646PubMedCrossRefGoogle Scholar
  47. Kim SW, Jung JH, Lamasal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I, Ranville J, Sinclair C, Spurgeon D, Tiede K, Van den Brink PJ (2016) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240CrossRefGoogle Scholar
  49. Kumar RSS, Shiny PJ, Anjali CH, Jerobin J, Goshen KM, Magdassi S et al (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20(4):2593–2602CrossRefGoogle Scholar
  50. Kumar PM, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Alsalhi MS, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2016) Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, aedes albopictus, and the mosquito predators toxorhynchites splendens and mesocyclops thermocyclopoides. Parasitol Res 115:751–759PubMedCrossRefGoogle Scholar
  51. Laranjeira M, Shirosaki Y, Yoshimatsu Yasutomi S, Miyazaki T, Monteiro FJ (2017) Enhanced biosafety of silica coated gadolinium based nanoparticles. J Mater Sci Mater Med 28:46PubMedCrossRefGoogle Scholar
  52. Larguinho M, Baptista PV (2011) Gold and silver nanoparticles for clinical diagnostics from genomics to proteomics. J Proteome 75:2811–2823CrossRefGoogle Scholar
  53. Loha KM, Shakil NA, Kumar J, Singh MK, Adak T, Jain S (2011) Release kinetics of β-cyfluthrin from its encapsulated formulations in water. J Environ Sci Health B 46(3):201–206PubMedCrossRefGoogle Scholar
  54. Loha KM, Shakil NA, Kumar J, Singh M, Srivastava C (2012) Bio-efficacy evaluation of nanoformulations of β-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J Environ Sci Health B 47(7):687–691PubMedCrossRefGoogle Scholar
  55. Mingming A, Yuncong Z, Shun H, Deguang L, Pingliang L, Jianqiang L et al (2013) Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-released performance. Nanotechnology 24(3):035601–035608CrossRefGoogle Scholar
  56. Mirabelli MF, Wolf JC, Zenobi R (2016) Pesticide analysis at ppt concentration levels: coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry. Anal Bioanal Chem 408:3425–3434PubMedCrossRefGoogle Scholar
  57. Mishra P, Balaji AP, Swathy JS, Paari AL, Kezhiah M, Tyagi BK, Mukherjee A, Chandrasekaran N (2016) Stability assessment of hydro dispersive nanometric permethrin and its biosafety study towards the beneficial bacterial isolate from paddy rhizome. Environ Sci Pollut Res Int 23:24970–24982PubMedCrossRefGoogle Scholar
  58. Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176:1937–1949PubMedCrossRefGoogle Scholar
  59. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893CrossRefGoogle Scholar
  60. Narayanan N, Gupta S, Gajbhiye VT, Manjaiah KM (2017) Chemosphere optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Parasitol Res 173:502–511Google Scholar
  61. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T, Ijiro K, Sawa H (2013) Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7:3926–3938PubMedCrossRefGoogle Scholar
  62. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483PubMedCrossRefGoogle Scholar
  63. Paret ML, Palmateer AJ, Knox GW (2013a) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare. Hortscience 48(2):189–192Google Scholar
  64. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013b) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3):228–236PubMedCrossRefGoogle Scholar
  65. Periasamy AP, Umasankar Y, Chen SM (2009) Nanomaterials - acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensors (Basel) 9:4034–4055CrossRefGoogle Scholar
  66. Petosa AR, Rajput F, Selvam O, Ohl C, Tufenkji N (2016) Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Res 111:10–17PubMedCrossRefGoogle Scholar
  67. Pradeep K, Prashant S, Kamlesh K, Subho M, Ramesh C (2011) A green approach for the synthesis of gold nanotriangles using aqueous leaf extract of Callistemon viminalis. Mater Lett 65:595–597CrossRefGoogle Scholar
  68. Prashant S (2013) A simple, rapid, and green synthesis of capped gold nanospheres and nanorods using aqueous extract of azolla. Int J Green Nano 1:1–5Google Scholar
  69. Prashant S, Sunil K, Anju K, Rashmi K, Ramesh C (2008a) A novel route for the synthesis of indium nanoparticles in ionic liquid. Mater Lett 62:4164–4166CrossRefGoogle Scholar
  70. Prashant S, Anju K, Rashmi K, Ramesh C (2008b) Copper nanoparticles in ionic liquid: an easy and efficient catalyst for the coupling of thiazolidine-2,4-dione, aromatic aldehyde and ammonium acetate. Catal Commun 9:1618–1623CrossRefGoogle Scholar
  71. Prashant S, Anju K, Rashmi K, Ramesh C (2008c) Copper nanoparticles in an ionic liquid: an efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxothiazolyl)methanes. Tetrahedron Lett 49:727–730CrossRefGoogle Scholar
  72. Prashant S, Kamlesh K, Anju K, Rashmi K, Ramesh C (2009a) Synthesis and characterization of silver and gold nanoparticles in ionic liquid. Spectrochim Acta A Mol Biomol Spectrosc 73:218–220CrossRefGoogle Scholar
  73. Prashant S, Kamlesh K, Anju K, Rashmi K, Ramesh C (2009b) Copper nanoparticles in ionic liquid: an easy and efficient catalyst for selective Cara-Michael addition reaction. Catal Lett 127:119–125CrossRefGoogle Scholar
  74. Prashant S, Kamlesh K, Anju K, Rashmi K, Ramesh C (2009c) Cu nanoparticles in ionic liquid: an easy and efficient catalyst for addition–elimination reaction between active methylene compounds and imines in an ionic liquid. Catal Lett 130:648–654CrossRefGoogle Scholar
  75. Prashant S, Pradeep K, Kamlesh K, Pankaj S, Subho M, Ramesh C (2011) A rapid and simple route for the synthesis of lead and palladium nanoparticles in tetrazolium based ionic liquid. Spectrochim Acta A Mol Biomol Spectrosc 78:909–912CrossRefGoogle Scholar
  76. Prashant S, Kamlesh K, Vijay V, Gopal M, Durgesh K, Vaishali S, Ramesh C (2017) Metal NPs (Au, Ag, and Cu): Synthesis, stabilization, and their role in green chemistry and drug delivery. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Cham. Chapter 14, 309–338Google Scholar
  77. Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173(1–2):51–57CrossRefGoogle Scholar
  78. Qing S, Yongli S, Yuehong Z, Ting Z, Haoyan S (2013) Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polym Adv Technol 24(2):137–143CrossRefGoogle Scholar
  79. Sarkar DJ, Kumar J, Shakil NA, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(11):1701–1712PubMedCrossRefGoogle Scholar
  80. Scheeren CW, Machado G, Teixeira SR, Morais J, Domingos JB, Dupont J (2006) Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. J Phys Chem B 110:13011–13020PubMedCrossRefGoogle Scholar
  81. Silva MS, Cosenza DS, Grillo R, Melo NFS, Tonello PS, Oliveira LC et al (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190(1–3):366–374CrossRefGoogle Scholar
  82. Song MR, Cui SM, Gao F, Liu YR, Fan CL, Lei TQ et al (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37(3):258–260CrossRefGoogle Scholar
  83. Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579PubMedGoogle Scholar
  84. Stadler T, Buteler M, Weaver DK, Sofe S (2012) Comparative toxicity of nano structured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90CrossRefGoogle Scholar
  85. Wang L, Su M, Zhao X, Hong J, Yu X, Xu B, Sheng L, Liu D, Shen W, Li B, Hong F (2015) Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. Arch Environ Contam Toxicol 68:534–542PubMedCrossRefGoogle Scholar
  86. Wang Y, Sun C, Zhao X, Cui B, Zeng Z, Wang A, Liu G, Cui H (2016) The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res Lett 11:529PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wilcoxon J (2009) Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B 113:2647–2656PubMedCrossRefGoogle Scholar
  88. Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86CrossRefGoogle Scholar
  89. Xiang GQ, Ren Y, Xia Y, Mao W, Fan C, Guo SY, Wang PP, Yang DH, He L, Jiang X (2017) Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for bisphenol. Spectrochim Acta A Mol Biomol Spectrosc 177:153–157PubMedCrossRefGoogle Scholar
  90. Xie W, Su L, Donfack P, Shen A, Zhou X, Sackmann M, Materny A, Hu J (2009) Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold–silver core–shell nanoparticles. Chem Commun (Camb):5263–5265Google Scholar
  91. Xu X, Li Y, Gong Y, Zhang P, Li H, Wang Y (2012) Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J Am Chem Soc 134:16987–16990PubMedCrossRefGoogle Scholar
  92. Xu Y, Wang Y, Li K, Niu M, Zeng Y, Jiang J, Jin Z (2013) Rh nanoparticle catalyzed hydroaminomethylation of 1-octene in thermoregulated ionic liquid and organic biphasic system. J Nanosci Nanotechnol 13:5048–5052PubMedCrossRefGoogle Scholar
  93. Yang G, Zhao F, Zeng B (2014) Facile fabrication of a novel anisotropic gold nanoparticle-Chitosan-ionic liquid/Graphene modified electrode for the determination of theophylline and caffeine. Talanta 127:116–122PubMedCrossRefGoogle Scholar
  94. Yao HB, Mao LB, Yan YX, Cong HP, Lei X, SH Y (2012) Gold nanoparticle functionalized artificial nacre: facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties. ACS Nano 6:8250–8260PubMedCrossRefGoogle Scholar
  95. Yao J, Sun N, Wang J, Xie Y, Deng C, Zhang X (2017) Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment. Proteomics 17(8):1600320.  https://doi.org/10.1002/pmic.201600320 CrossRefGoogle Scholar
  96. Yin YH, Guo QM, Han Y, Wang LJ, Wan SQ (2012) Isolation and characterization of NBSLRR class resistance homologous gene from wheat. J Integr Agric 1(7):1151–1158CrossRefGoogle Scholar
  97. Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674PubMedCrossRefGoogle Scholar
  98. Zapp E, Westphal E, Gallardo H, de Souza B, Cruz Vieira I (2014) Liquid crystal and gold nanoparticles applied to electrochemical immunosensor for cardiac biomarker. Biosens Bioelectron 59:127–133PubMedCrossRefGoogle Scholar
  99. Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612PubMedCrossRefGoogle Scholar
  100. Zhang HJ, Zheng HZ, Long YJ, Xiao GF, Zhang LY, Wang QL, Gao M, Bai WJ (2012) Gold nanoparticles as a label-free probe for the detection of amyloidogenic protein. Talanta 89:401–406PubMedCrossRefGoogle Scholar
  101. Zheng Q, Yu Y, Fan K, Ji F, Wu J, Ying Y (2016) A nano-silver enzyme electrode for organophosphorus pesticide detection. Anal Bioanal Chem 408:5819–5827PubMedCrossRefGoogle Scholar
  102. Zheng Y, Fahrenholtz C, Hackett C, Ding S, Day C, Dhall R, Marrs G, Gross M, Singh R, Bierbach U (2017) Large-pore functionalized mesoporous silica nanoparticles as drug delivery vector for a highly cytotoxic hybrid platinum–acridine anticancer agent. Chemistry 23(14):3386–3397.  https://doi.org/10.1002/chem.201604868 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Prashant Singh
    • 1
  • Kamlesh Kumari
    • 2
  • Vijay K. Vishvakarma
    • 1
  • Sangita Aggarwal
    • 1
  • Ramesh Chandra
    • 3
  • Anita Yadav
    • 4
  1. 1.ARSD College, University of DelhiDelhiIndia
  2. 2.DDU College, Delhi UniversityDelhiIndia
  3. 3.Department of chemistryUniversity of DelhiNew DelhiIndia
  4. 4.Rajdhani College, Delhi UniversityNew DelhiIndia

Personalised recommendations