Structure, Regulation, and Potential Applications of Insect Chitin-Metabolizing Enzymes



Chitin is a vital component of insect exoskeleton and peritrophic matrix and because of this reason a potential target for insecticidal agents. Chitin-metabolizing enzymes, viz., chitin synthases and chitinases, belong to the glycoside hydrolase superfamily (GH18). Chitin synthases are involved in deposition of new cuticle during molting and also ideal for development of insecticidal agents. Chitinases are considered as an essential enzyme for insect growth and development being involved in molting and various other physiological processes, i.e., cuticle turnover, regulation of abdominal contraction and wing expansion, digestion, immunity, and natural defense. Chitinases possess multi-domain architecture, i.e., chitin-binding domain, Ser-/Thr-rich linker domains, catalytic domains, fibronectin, and mucin-like domains. Knockdown of both the enzymes resulted into irregularities in metamorphosis. Diverse group of chitinase-like proteins have also been detected in insect species that possess chitin-binding domains but do not exhibit catalytic activity. Development of chitinases as defensive agents against chitin-bearing insect pests and pathogens will generate new knowledge and innovative processes for biocontrol advancements.


Chitin Glycoside hydrolase Chitinase Chitin synthase Biocontrol 


  1. Abdel-Banat BMA, Kameyama Y, Yoshioka T, Koga D (1999) Purification and characterization of a 54 kDa chitinase from Bombyx mori. Insect Biochem Mol Biol 30:107–117Google Scholar
  2. Abo-Elghar GE, Fujiyoshi P, Matsumura F (2004) Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem Mol Biol 34:743–752PubMedCrossRefGoogle Scholar
  3. Ahmad T, Rajagopal R, Bhatnagar RK (2003) Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera. Biochem Biophys Res Commun 310:188–195PubMedCrossRefGoogle Scholar
  4. Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216PubMedCrossRefGoogle Scholar
  5. Arakane Y, Zhu Q, Matsumiya M, Muthukrishnan S, Kramer KJ (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem Mol Biol 33:631–648PubMedCrossRefGoogle Scholar
  6. Arakane Y, Hogenkamp DG, Zhu YC et al (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304PubMedCrossRefGoogle Scholar
  7. Arakane Y, Muthukrishnan S, Kramer K et al (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453–463PubMedCrossRefGoogle Scholar
  8. Arakane Y, Specht CA, Kramer KJ et al (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38:959–962PubMedCrossRefGoogle Scholar
  9. Aronson NN, Halloran BA, Alexyev ME, Amable L, Madura JD (2003) Family 18 chitinase oligosaccharide substrate interaction: subsite preference and anomer selectivity of S. marcescens chitinase A. J Biochem 376:87–95CrossRefGoogle Scholar
  10. Bade ML (1974) Localisation of molting chitinase in insect cuticle. Biochim Biophys Acta 372:474–477CrossRefGoogle Scholar
  11. Bao W, Cao B, Zhang Y, Wuriyanghan H (2016) Silencing of Mythimna separata chitinase genes via oral delivery of in planta-expressed RNAi effectors from a recombinant plant virus. Biotechnol Lett 38:1961–1966. doi: 10.1007/s10529-016-2186-0 PubMedCrossRefGoogle Scholar
  12. Bortone K, Monzingo AE, Ernst S, Robertus JD (2002) The structure of an allosamidin complex with the Coccidioides immitis chitinase defines a role for a second acid residue in substrate-assisted mechanism. J Mol Biol 320:293–302PubMedCrossRefGoogle Scholar
  13. Brameld KA, Shrader WD, Imperiali B, Goddard WA (2002) Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J Mol Biol 280:913–923CrossRefGoogle Scholar
  14. Chapman RF (1998) The insects: structure and function. Cambridge University Press, New YorkCrossRefGoogle Scholar
  15. Chen AC (1987) Chitin metabolism. Arch Insect Biochem Physiol 6:267–277CrossRefGoogle Scholar
  16. Chen L, Yang W-J, Cong L et al (2013) Molecular cloning, characterization and mRNA expression of a chitin synthase 2 gene from the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Int J Mol Sci 14:17055–17072PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen L, Liu T, Zhou Y, Chen Q, Shen X, Yang Q (2014a) Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting. Acta Crystallogr D Biol Crystallogr 70:932–942PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen L, Zhou Y, Qu M, Zhao Y, Yang Q (2014b) Fully deacetylated chitooligosaccharides act as efficient glycoside hydrolase family 18 chitinase inhibitors. J Biol Chem 289:17932–17940PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cohen E (1987) Chitin biochemistry: synthesis and inhibition. Annu Rev Entomol 32:71–93CrossRefGoogle Scholar
  20. Coutinho PM, Deleury E, Davies GJ et al (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  21. De Cock A, Degheele D (1998) Buprofezin: a novel chitin synthesis inhibitor affecting specifically planthoppers, whiteflies and scale insects. In: Insecticides with novel modes of action. Springer, Berlin Heidelberg, pp 74–91CrossRefGoogle Scholar
  22. Demaeght P, Osborne EJ, Odman-Naresh J et al (2014) High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochem Mol Biol 51:52–61PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dorfmueller HC, Ferenbach AT, Borodkin VS et al (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289:23020–23028PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370PubMedPubMedCentralCrossRefGoogle Scholar
  25. Filho BPD, Lemos EA, Secundino NEC, Pascoa V, Pereira ST (2002) Presence of chitinase and β -N-acetylglucosaminidase in the Aedes aegypti chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem Mol Biol 32:1723–1729PubMedCrossRefGoogle Scholar
  26. Fitches E, Wilkinson H, Bell H, Bown DP, Gatehouse JA, Edwards JP (2004) Cloning, expression and functional characterisation of chitinase from larvae of tomato moth (Lacanobia oleracea): a demonstration of the insecticidal activity of insect chitinase. Insect Biochem Mol Biol 34:1037–1050PubMedCrossRefGoogle Scholar
  27. Fontoura NG, Bellinato DF, Valle D et al (2012) The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil. Mem Inst Oswaldo Cruz 107:387–395PubMedCrossRefGoogle Scholar
  28. Fukamizo T (2000) Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci 1:105–124PubMedCrossRefGoogle Scholar
  29. Harris MT, Fuhrman JA (2002) Structure and expression of chitin synthase in the parasitic nematode Dirofilaria immitis. Mol Biochem Parasitol 122:231–234PubMedCrossRefGoogle Scholar
  30. Hogenkamp DG, Arakane Y, Zimoch L et al (2005) Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochem Mol Biol 35:529–540PubMedCrossRefGoogle Scholar
  31. Honda Y, Kitaoka M, Tokuyasu K, Sasaki C, Fukamizo T et al (2003) Kinetic studies on the hydrolysis of N-acetylated and N-deacetylated derivatives of 4-methylumbelliferyl chitobioside by the family 18 chitinases ChiA and ChiB from Serratia marcescens. J Biochem (Tokyo) 133:253–258CrossRefGoogle Scholar
  32. Huang X, Zhang H, Zen KC, Muthukrishnan S, Kramer KJ (2000) Homology modeling of the insect chitinase catalytic domain–oligosaccharide complex and the role of a putative active site tryptophan in catalysis. Insect Biochem Mol Biol 30:107–117PubMedCrossRefGoogle Scholar
  33. Huang Z, Hao Y, Gao T, Huang Y, Ren S, Keyhani NO (2016) The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Appl Microbiol Biotechnol 100:5491–5503PubMedCrossRefGoogle Scholar
  34. Ibrahim GH, Smartt CT, Kiley LM et al (2000) Cloning and characterization of a chitin synthase cDNA from the mosquito Aedes aegypti. Insect Biochem Mol Biol 30:1213–1222PubMedCrossRefGoogle Scholar
  35. Kaya M, Tozak KÖ, Baran T et al (2013) Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea). Excli J (In eCollection) 12:503–510Google Scholar
  36. Kaya M, Lelesius E, Nagrockaite R, Sargin I, Arslan G, Mol A, Baran T, Can E, Bitim B (2015) Differentiations of chitin content and surface morphologies of chitins extracted from male and female Grasshopper species. PLoS One 10:1–14CrossRefGoogle Scholar
  37. Kaya M, Sargin I, Al-jafa I, Erdogan S, Arslan G (2016a) Characteristics of corneal lens chitin in dragonfly compound eyes. Int J Biol Macromol 89:54–61PubMedCrossRefGoogle Scholar
  38. Kaya M, Sofi K, Sargin I, Mujtabaa M (2016b) Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydr Polym 145:64–70PubMedCrossRefGoogle Scholar
  39. Kim MG, Shin SW, Bae KS, Kim SC, Park HY (1998) Molecular cloning of chitinase cDNAs from the silkworm, Bombyx mori and the fall webworm, Hyphantria cunea. Insect Biochem Mol Biol 28:163–171PubMedCrossRefGoogle Scholar
  40. Koga D, Funakoshi T, Mizuki K, Ide A, Kramer KJ, Zen KC, Choi H, Muthukrishnan S (1992) Immunoblot analysis of chitinolytic enzymes in integument and molting fluid of the silkworm Bombyx mori and the tobacco hornworm Manduca sexta. Insect Biochem Mol Biol 22:305–311CrossRefGoogle Scholar
  41. Kola VSR, Renuka P, Madhav MS et al (2015) Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 6:119–134PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kramer KJ, Koga D (1986) Insect chitin: physical state, synthesis, degradation and metabolic regulation. Insect Biochem 16:851–877CrossRefGoogle Scholar
  43. Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:897–900CrossRefGoogle Scholar
  44. Kramer KJ, Muthukrishnan S (2005) Chitin metabolism in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive molecular insect science, vol 4. Elsevier, Oxford, pp 111–144CrossRefGoogle Scholar
  45. Kramer K, Muthukrishnan S (2009) Chitin metabolism in insects. In: Gillbert LI (ed) Insect development: morphogenesis, molting and metamorphosis. Academic Press, London, pp 497–530Google Scholar
  46. Kramer KJ, Corpuz LM, Choi H, Muthukrishnan S (1993) Sequence of a eDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol 23:691–701PubMedCrossRefGoogle Scholar
  47. Kucerova L, Broz V, Arefin B, Maaroufi HO, Hurychova J, Strnad H, Zurovec M, Theopold U (2016) The Drosophila chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J Innate Immun 8:199–210PubMedCrossRefGoogle Scholar
  48. Li D, Zhang J, Wang Y, Liu X, Ma E, Sun Y, Li S, Zhu KY, Zhang J (2015a) Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58:46–54PubMedCrossRefGoogle Scholar
  49. Li X, Xu Z, Zhou G, Lin H, Zhou J, Zeng Q, Mao Z, Gu X (2015b) Molecular characterization and expression analysis of five chitinases associated with molting in the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B 187:110–120PubMedCrossRefGoogle Scholar
  50. Lombard V, Ramulu HG, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495PubMedCrossRefGoogle Scholar
  51. Lu Y, Zen KC, Muthukrishnan S, Kramer KJ (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32:1369–1382PubMedCrossRefGoogle Scholar
  52. Mansur JF, Alvarenga ES, Figueira-Mansur J et al (2014) Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus. Insect Biochem Mol Biol 51:110–121PubMedCrossRefGoogle Scholar
  53. Meng H, Wang Z, Meng X, Xie L, Hunag B (2015) Cloning and expression analysis of the chitinase gene Ifu-chit2 from Isaria fumosorosea. Genet Mol Biol 38:381–389PubMedPubMedCentralCrossRefGoogle Scholar
  54. Merzendorfer H (2006) Insect chitin synthases: a review. J Comp Physiol 176:1–15CrossRefGoogle Scholar
  55. Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90:759–769PubMedCrossRefGoogle Scholar
  56. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412PubMedCrossRefGoogle Scholar
  57. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186PubMedCrossRefGoogle Scholar
  58. Moussian B (2008) The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 149:215–226PubMedCrossRefGoogle Scholar
  59. Moussian B (2010) Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 40:363–375PubMedCrossRefGoogle Scholar
  60. Moussian B, Schwarz H, Bartoszewski S et al (2005) Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 264:117–130PubMedCrossRefGoogle Scholar
  61. Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) Chitin metabolism in insects. In: Insect molecular biology and biochemistry. Elsevier, London, pp 193–235. doi: 10.1016/B978-0-12-384747-8.10007-8 CrossRefGoogle Scholar
  62. Muthukrishnan S, Merzendorfer H, Arakane Y et al (2016) Chitin metabolic pathways in insects and their regulation. In: Extracellular composite matrices in arthropods. Springer, Cham, pp 31–65CrossRefGoogle Scholar
  63. Nakabachi A, Shigenobu S, Miyagishima S (2010) Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19:175–185PubMedCrossRefGoogle Scholar
  64. Osman GH, Assem SK, Alreedy RM, El-Ghareeb DK, Basry MA, Rastogi A, Kalaji HM (2015) Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm Spodoptera littoralis. Sci Rep 5:18067PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ostrowski S, Dierick HA, Bejsovec A (2002) Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 161:171–182PubMedPubMedCentralGoogle Scholar
  66. Pan Y, Lü P, Wang Y, Yin L, Ma H, Ma G, Chen K, He Y (2012) In silico identification of novel chitinase-like proteins in the silkworm, Bombyx mori, genome. J Insect Sci 12:150–163PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pesch YY, Riedel D, Patil KR, Loch G, Behr M (2016) Chitinases and imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 6:18340PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRefGoogle Scholar
  69. Reddy KRK, Rajam MV (2016) Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90:281–292PubMedCrossRefGoogle Scholar
  70. Resch Y, Blatt K, Malkus U, Fercher C, Swoboda I, Focke-Tejkl M, Chen KW, Seiberler S, Mittermann I, Lupinek C, Rodriguez-Dominguez A, Zieglmayer P, Zieglmayer R, Keller W, Krzyzanek V, Valent P, Valenta R, Vrtala S (2016) Molecular, structural and immunological characterization of Der p18, a chitinase-like house dust mite allergen. PLoS One 11:1–19CrossRefGoogle Scholar
  71. Reynolds SE (1987) The cuticle, growth and moulting in insects: the essential background to the action of acylurea insecticides. Pestic Sci 20:131–146CrossRefGoogle Scholar
  72. Royer V, Fraichard S, Bouhin H (2002) A novel putative insect chitinase with multiple catalytic domains: hormonal regulation during metamorphosis. Biochem J 366:921–928PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ruiz-Herrera J, San-Blas G (2003) Chitin synthesis as a target for antifungal drugs. Curr Drug Targets Infect Disord 3:77–91PubMedCrossRefGoogle Scholar
  74. Samuels RI, Reynolds SE (1993) Moulting fluid enzymes of the tobacco hornworm, Manduca sexta: timing of proteolytic and chitinolytic activity in relation to pre-ecdysial development. Arch Insect Biochem Physiol 24:33–44CrossRefGoogle Scholar
  75. Saxena IM, Brown RM Jr, Fevre M et al (1995) Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419PubMedPubMedCentralCrossRefGoogle Scholar
  76. Shen Z, Jacobs-Lorena M (1997) Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J Biol Chem 272:28895–28900PubMedCrossRefGoogle Scholar
  77. Soltani N, Chebira S, Delbecque J, Delachambre J (1993) Biological activity of flucycloxuron, a novel benzoylphenylurea derivative, on Tenebrio molitor: comparison with diflubenzuron and triflumuron. Experientia 49:1088–1091CrossRefGoogle Scholar
  78. Stern R, Jedrzejas MJ (2008) Carbohydrate polymers at the center of life’s origins: the importance of molecular processivity. Chem Rev 108:5061–5085PubMedCrossRefGoogle Scholar
  79. Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Hernissat B, Watanabe T (1999) The third chitinase gene (ChiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596PubMedPubMedCentralCrossRefGoogle Scholar
  80. Tellam RL (1996) Protein motifs in filarial chitinases: an alternative view. Parasitol Today 12:291–292PubMedCrossRefGoogle Scholar
  81. Tellam RL, Eisemann C (2000) Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina. Insect Biochem Mol Biol 30:1189–1201PubMedCrossRefGoogle Scholar
  82. Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD (2000) Insect chitin synthase. Eur J Biochem 267:6025–6043PubMedCrossRefGoogle Scholar
  83. Tetreau G, Cao X, Chen Y-R, Muthukrishnan S, Jiang H et al (2015) Overview of chitin metabolism enzymes in Manduca sexta: identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62:114–126PubMedCrossRefGoogle Scholar
  84. Tharanathan RN, Kittur FS (2003) Chitin – the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87PubMedCrossRefGoogle Scholar
  85. Van Leeuwen T, Demaeght P, Osborne EJ et al (2012) Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc Natl Acad Sci 109:4407–4412PubMedPubMedCentralCrossRefGoogle Scholar
  86. Veronico P, Gray L, Jones J et al (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Gen Genomics 266:28–34CrossRefGoogle Scholar
  87. Wilson TG, Cryan JR (1997) Lufenuron, a chitin synthesis inhibitor, interrupts development of Drosophila melanogaster. J Exp Zool 278:37–44PubMedCrossRefGoogle Scholar
  88. Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol (A Special Edition on Biosensors and Development of Pigment Cells and Pigment Patterns). Elsevier 20:65–71Google Scholar
  89. Wu Q, Liu T, Yang Q (2013) Cloning, expression and biocharacterization of OfCht5, the chitinase from the insect Ostrinia furnacalis. Insect Sci 20:147–157PubMedCrossRefGoogle Scholar
  90. Yang B, Zhang M, Li L, Pu F, You W, Ke C (2015) Molecular analysis of atypical family 18 chitinase from fujian Oyster crassostrea angulata and its physiological role in the digestive system. PLoS One 10(6):1–13Google Scholar
  91. Yang M, Wang Y, Jiang F et al (2016) miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control Locust molting. PLoS Genet 12:e1006257PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yeager AR, Finney NS (2004) The first direct evaluation of the two-active site mechanism for chitin synthase. J Organomet Chem 69:613–618CrossRefGoogle Scholar
  93. Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18PubMedCrossRefGoogle Scholar
  94. Zhang X, Yan Zhu K (2013) Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae. Insect Sci 20:158–166PubMedCrossRefGoogle Scholar
  95. Zhang X, Zhang J, Zhu K (2010) Chitosan/double stranded RNA nanoparticle mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693PubMedCrossRefGoogle Scholar
  96. Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, Zhu KY (2011) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS One 6:e19899PubMedPubMedCentralCrossRefGoogle Scholar
  97. Zhang D, Chen J, Yao Q, Pan Z, Chen J, Zhang W (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79:220–234PubMedCrossRefGoogle Scholar
  98. Zhu Q, Deng Y, Vanka P, Brown SJ, Muthukrishnan S et al (2004) Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Bioinformatics 20:161–169PubMedCrossRefGoogle Scholar
  99. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008a) Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem Mol Biol 38:467–477PubMedCrossRefGoogle Scholar
  100. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008b) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci 105:6650–6655PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S (2008c) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol 38:452–466PubMedCrossRefGoogle Scholar
  102. Zhu KY, Merzendorfer H, Zhang W et al (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol 61:177–196PubMedCrossRefGoogle Scholar
  103. Zhuo W, Fang Y, Kong L et al (2014) Chitin synthase A: a novel epidermal development regulation gene in the larvae of Bombyx mori. Mol Biol Rep 41:4177–4186PubMedCrossRefGoogle Scholar
  104. Zimoch L, Hogenkamp D, Kramer K, Muthukrishnan S, Merzendorfer H (2005) Regulation of chitin synthesis in the larval midgut of Manduca sexta. Insect Biochem Mol Biol 35:515–527PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology, School of Life SciencesCentral University of RajasthanAjmerIndia
  2. 2.Centre for Energy and EnvironmentMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations