Application of Recombinant Insect Products in Modern Research: An Overview



Biotechnology enables the genetic engineering through gene modification, broadening the range of natural products, as far production and application of transgenic products, such as implant coatings, scaffolds for tissue engineering, wound dressing devices, as well as drug delivery systems. In the present scenario, recombinant technology including the expression of DNA and gene modification or simple genetic manipulation to several host organisms, involving bacteria, yeast, plants, insect cells, mammalian cells, and transgenic animals seems to have tremendous and promising future research opportunities. In this chapter, an attempt is made onto modern research initiatives using recombinantly produced insect products and applications.


Biotechnology Recombinant DNA technology Insect cells Proteins Peptides 


  1. Al-Waili NS, Salom K, Al-Ghamdi AA (2011) Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice. Sci World J 11:766–787CrossRefGoogle Scholar
  2. An B, Jenkins JE, Sampath S et al (2012) Reproducing natural spider silks’ copolymer behavior in synthetic silk mimics. Biomacromolecules 13:3938–3948CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atkins EDT (1967) A four-strand coiled-coil model for some insect fibrous proteins. J Mol Biol 24:139–141CrossRefGoogle Scholar
  4. Brooks AE, Steinkraus HB, Nelson SR et al (2005) An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia. Biomacromolecules 6:3095–3099CrossRefPubMedGoogle Scholar
  5. Browning MB, Dempsey D, Guiza V et al (2012) Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater 8:1010–1021CrossRefPubMedGoogle Scholar
  6. Cherniack EP (2010) Bugs as drugs, part 1: insects. The “new” alternative medicine for the 21st century? Altern Med Rev 15(2):124–135PubMedGoogle Scholar
  7. Choudary PV, Kamita SG, Maeda S (1995) Expression of foreign genes in Bombyx mori larvae using baculovirus vectors. Methods Mol Biol 39:243–264PubMedGoogle Scholar
  8. Corchero JL, Vázquez E, García-Fruitós E et al (2014) Recombinant protein materials for bioengineering and nanomedicine. Nanomedicine 9(18):2817–2828CrossRefPubMedGoogle Scholar
  9. Dang YJ, Zhu CY (2013) Oral bioavailability of cantharidin-loaded solid lipid nanoparticles. BMC Chin Med 8:1. doi: 10.1186/1749-8546-8-1 CrossRefGoogle Scholar
  10. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306CrossRefPubMedGoogle Scholar
  11. Ding D, Guerette PA, Hoon S et al (2014) Biomimetic production of silk-like recombinant squid sucker ring teeth proteins. Biomacromolecules 15(9):3278–3289CrossRefPubMedGoogle Scholar
  12. Dossey AT (2010) Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27(12):1737–1757CrossRefPubMedGoogle Scholar
  13. Dyck MK, Lacroix D, Pothier F et al (2003) Making recombinant proteins in animals different systems, different applications. Trends Biotechnol 21:394–399CrossRefPubMedGoogle Scholar
  14. Fahnestock SR, Irwin SL (1997) Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 47:23–32CrossRefPubMedGoogle Scholar
  15. Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides: a review. Front Microbiol 4:294. doi: 10.3389/fmicb.2013.00294 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gatesy J, Hayashi C, Motriuk D et al (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291(5513):2603–2605CrossRefPubMedGoogle Scholar
  17. Ghaffarifar F (2010) Leishmania major: In vitro and in vivo anti-leishmanial effect of cantharidin. Exp Parasitol 126(2):126–129CrossRefPubMedGoogle Scholar
  18. Gosline JM, Denny MW, DeMont ME (1984) Spider silk as rubber. Nature 309:551–552CrossRefGoogle Scholar
  19. Grzelak K (1995) Control of expression of silk protein genes. Comp Biochem Physiol B Biochem Mol Biol 110:671–681CrossRefPubMedGoogle Scholar
  20. Higashiya S, Topilina NI, Ngo SC et al (2007) Design and preparation of b-sheet forming repetitive and block-copolymerized polypeptides. Biomacromolecules 8:1487–1497CrossRefPubMedGoogle Scholar
  21. Hu X, Vasanthavada K, Kohler K et al (2006) Molecular mechanisms of spider silk. Cell Mol Life Sci 63:1986–1999CrossRefPubMedGoogle Scholar
  22. Hu X, Cebe P, Weiss AS et al (2012) Protein-based composite materials. Mater Today 15(5):208–215CrossRefGoogle Scholar
  23. Huemmerich D, Helsen CW, Quedzuweit S et al (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemist 43:13604–13612CrossRefGoogle Scholar
  24. Humenik M, Scheibel T, Smith A (2011) Spider silk understanding the structure-function relationship of a natural fiber. Prog Mol Biol Transl Sci 103:131–185CrossRefPubMedGoogle Scholar
  25. Kumar M, Jain D, Bhardwaj N et al (2016) Native honeybee silk membrane: a potential matrix for tissue engineering and regenerative medicine. RSC Adv 6(59):54394–54403CrossRefGoogle Scholar
  26. Kuwana Y, Sezutsu H, Nakajima KI et al (2014) High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein. PloS One 9(8):e105325, 1-11CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lamberg A, Helaakoski T, Myllyharju J et al (1996) Characterization of human type III collagen expressed in a baculovirus system production of a protein with a stable triple helix requires coexpression with the two types of recombinant prolyl 4-hydroxylase subunit. J Biol Chem 271(20):11988–11995CrossRefPubMedGoogle Scholar
  28. Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774CrossRefPubMedGoogle Scholar
  29. Lissina E, Young B, Urbanus ML et al (2011) A systems biology approach reveals the role of a novel methyltransferase in response to chemical stress and lipid homeostasis. PLoS Genet 7(10):e1002332CrossRefPubMedPubMedCentralGoogle Scholar
  30. Maeda S, Kawai T, Obinata M et al (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315:592–594CrossRefPubMedGoogle Scholar
  31. Meyer DE, Chilkoti A (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3:357–367CrossRefPubMedGoogle Scholar
  32. Moed L, Shwayder TA, Chang MW (2001) Cantharidin revisited: a blistering defense of an ancient medicine. Arch Dermatol 137(10):1357–1360CrossRefPubMedGoogle Scholar
  33. Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A (2016) Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc B 371:20150290. doi: 10.1098/rstb.2015.0290 CrossRefGoogle Scholar
  34. Ntwasa M (2012) Cationic peptide interactions with biological macromolecules. In: Abdelmohsen K (ed) Binding Protein. InTech, Croatia, pp 139–164Google Scholar
  35. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531CrossRefPubMedPubMedCentralGoogle Scholar
  36. Poole J, Church JS, Woodhead AL et al (2013) Continuous production of flexible fibers from transgenically produced honeybee silk proteins. Macromol Biosci 13(10):1321–1326CrossRefPubMedGoogle Scholar
  37. Poppel AK, Vogel H, Wiesner J, Vilcinskas A (2015) Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother 59:2508–2514CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rabotyagova OS, Cebe P, Kaplan DL (2010) Role of polyalanine domains in β-sheet formation in spider silk block copolymers. Macromol Biosci 10:9–59Google Scholar
  39. Rahnamaeian M, Vilcinskas A (2012) Defense gene expression is potentiated in transgenic barley expressing antifungal peptide Metchnikowin throughout powdery mildew challenge. J Plant Res 125:115–124CrossRefPubMedGoogle Scholar
  40. Ratcliffe NA, Mello CB, Garcia ES et al (2011) Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol 41(10):747–769CrossRefPubMedGoogle Scholar
  41. Ratcliffe N, Azambuja P, Mello CB (2014) Recent advances in developing insect natural products as potential modern day medicines. Evid Based Complement Alternat Med 2014:1–21CrossRefGoogle Scholar
  42. Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 3:1–14CrossRefGoogle Scholar
  43. Shi J, Lua S, Du N, Liu X, Song J (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828CrossRefPubMedGoogle Scholar
  44. Sutherland TD, Young J, Weisman S et al (2010) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188CrossRefPubMedGoogle Scholar
  45. Sutherland TD, Church JS, Hu X et al (2011) Single honeybee silk protein mimics properties of multi-protein silk. PLoS One 6(2):e16489CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sutherland TD, Peng YY, Trueman HE et al (2013) A new class of animal collagen masquerading as an insect silk. Sci Rep 3:2864CrossRefPubMedPubMedCentralGoogle Scholar
  47. Teulé F, Addison B, Cooper AR et al (2012a) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers 97:418–431CrossRefPubMedGoogle Scholar
  48. Teulé F, Miao YG, Sohn BH et al (2012b) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci 109(3):923–928CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tokareva O, Michalczechen-Lacerda VA, Rech EL et al (2013) Recombinant DNA production of spider silk proteins. Microb Biotechnol 6(6):651–663CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33(4):645–654CrossRefPubMedGoogle Scholar
  51. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vuorela A, Myllyharju J, Nissi R et al (1997) Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J 16(22):6702–6712CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang GS (1989) Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol 26(2):147–162CrossRefPubMedGoogle Scholar
  54. Wang C, Patwardhan SV, Belton DJ et al (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A 103:9428–9433CrossRefGoogle Scholar
  55. Weisman S, Haritos VS, Church JS et al (2010) Honeybee silk: recombinant protein production, assembly and fiber spinning. Biomaterials 31(9):2695–2700CrossRefPubMedGoogle Scholar
  56. Zhang J, Pritchard E, Hu X et al (2013) Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proc Natl Acad Sci U S A 109(30):11981–11986CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryYMD College, M. D. UniversityNuhIndia

Personalised recommendations