Advertisement

Molecular Marker-Assisted Selection Breeding in Silkworm, Bombyx mori

  • Rajendra Mundkur
  • E. Muniraju
Chapter

Abstract

Silkworm is the lepidopteran molecular model. Many biotechnologists have constructed large database of DNA sequences and have tried to correlate with the traditional linkage maps. Molecular marker-assisted selection (MAS) has been considered as a means to improve the efficiency, accuracy, and speed of the breeding process. Markers are the specialized breeding tools which aid selection for target genes that are not easily visible morphologically in individuals, minimize the drag around the target gene, and reduce the number of generations required to achieve the required result. In this hope, conventional breeders in all the disciplines of life sciences, including silkworm, are turning into biotechnologists. Like in any field of computer science, before a technology in the field of DNA marker is understood and put into practice, another simpler, more efficient, economical technology emerges. In this context, to keep up the pace with the technology, it has become necessary for the breeder to be familiar with the advancement in the field of DNA-marker technology.

Keywords

Breeding DNA markers Silkworm Bombyx mori 

References

  1. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74(12):5350–5354CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 9(13):3015–3027CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babak G, Jonas E, Nader N, Tommy N, Nyren P (2004) Improvements in pyrosequencing technology by employing sequence polymerase. Anal Biochem 330(2):272–280CrossRefGoogle Scholar
  4. Beavis WD, Grant D, Albertsen MC, Fincher RR (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145CrossRefPubMedGoogle Scholar
  5. Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Report 19:209–215CrossRefGoogle Scholar
  6. Burnette WN (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate—polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Ann Biochem 112(2):195–203CrossRefGoogle Scholar
  7. Chatterjee SN, Mohandas TP (2003) Identification of ISSR markers associated with productivity traits in silkworm, Bombyx mori L. Genome 46(3):438–447CrossRefPubMedGoogle Scholar
  8. Edwards A, Caskey T (1991) Closure strategies for random DNA sequencing. Methods: Companion Methods Enzymol 3(1):41–47CrossRefGoogle Scholar
  9. Edwards A, Voss H, Rice P, Civitello A, Stegemann J, Schwager C, Zimmerman J, Erfle H, Caskey T, Ansorge W (1990) Automated DNA sequencing of the human HPRT locus. Genomics 6:593–608CrossRefPubMedGoogle Scholar
  10. Findlay I, Taylor A, Quirke P, Frazier R, Urquhart A (1997) DNA fingerprinting from single cells. Nature 389(6651):555–556CrossRefPubMedGoogle Scholar
  11. Fleischmann RD (1995) Whole-genome random sequencing and assembly of Haemophilus influenza. Science 269(5223):496–512CrossRefPubMedGoogle Scholar
  12. Gage GL (1974) Polyploidization of the silk gland of Bombyx mori. Chromosoma 45:27–42CrossRefPubMedGoogle Scholar
  13. Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, Andersson B, Bontempi E, Eisen J, Angiuoli S, Wanless D, Von Arx A, Murphy L, Lennard N, Salzberg S, Adams MD, White O, Hall N, Stuart K, Fraser CM, El-Sayed NM (2004) Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 134(2):183–191CrossRefPubMedGoogle Scholar
  14. Goldsmith MR (1995) In: Goldsmith MR, Wilkins AS (eds) Molecular model system in the Lepidoptera. Cambridge University Press, New York, pp 21–76CrossRefGoogle Scholar
  15. Goldsmith MR (2006) What should we do with our molecular linkage maps? A position paper on positional cloning targets for the silkworm, Bombyx mori. In: Abstracts of Int. Symp. on Genetics and Genomics, CDFD, Hyderabad, India 9–11 Jan 2006Google Scholar
  16. Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100CrossRefPubMedGoogle Scholar
  17. Gupta M, Chyi Y-S, Romero SJ, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006PubMedGoogle Scholar
  18. Jeffreys AJ, McLead A, Tamaki K, Neil DL, Monckton DG (1991) Miniature repeat coding as a digital approach to DNA typing. Nature 354:204–209CrossRefPubMedGoogle Scholar
  19. Kadono-Okuda K, Kosegawa E, Mase K, Hara W (2002) Linkage analysis of maternal EST, cDNA clones covering all twenty-eight chromosomes in the silkworm, Bombyx mori. Insect Mol Biol 11(5):443–451CrossRefPubMedGoogle Scholar
  20. Kuribayashi S (1992) Sericulture technology. Farming Jpn 26(5):18–24Google Scholar
  21. Li B, Lu C, Zhou ZY, Xiang ZH (2000) Construction of silkworm RAPD molecular linkage map. Yichuan Xuebao 27(2):27–32Google Scholar
  22. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74(2):560–564CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mita K, Morimyo M, Okano K, Koike Y, Nahata J, Kawasaki H, Kadono-Okuda K, Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR, Maeda S (2003) The construction of an EST database for Bombyx mori, and its application. Proc Natl Acad Sci U S A 100(24):4121–14126CrossRefGoogle Scholar
  24. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (2004) The Genome Sequence of Silkworm, Bombyx mori. DNA Res 11(1):27–35CrossRefPubMedGoogle Scholar
  25. Mullis K (1998) Dancing naked in the mind field. Pantheon Books, New YorkGoogle Scholar
  26. Nagaraja GM, Nagaraju J (1995) Genome fingerprinting of the silkworm, Bombyx mori, using random arbitrary primers. Electrophoresis 16(1):1633–1638CrossRefPubMedGoogle Scholar
  27. Nagaraja GM, Mahesh G, Satish V, Madhu M, Muthulakshmi M, Nagaraju J (2005) Genetic mapping of Z chromosome and identification of W chromosome-specific markers in the silkworm, Bombyx mori. Heredity 95:148–157CrossRefPubMedGoogle Scholar
  28. Nagaraju J, Goldsmith MR (2002) Silkworm genomics-progress and prospects. Curr Sci 83(4):415–425Google Scholar
  29. Nagaraju J, Kathirvel M, Subbaiah EV, Muthulakshmi M, Kumar LD (2002) FISSR-PCR, A simple and sensitive assay for high throughput genotyping and genetic mapping. Mol Cell Probes 16:67–72CrossRefPubMedGoogle Scholar
  30. Nguu EK, Okuda KK, Mase K, Kosegawa E, Hara W (2005) Molecular linkage map for the silkworm, Bombyx mori, based on restriction fragment length polymorphism of cDNA clones. J Insect Biotechnol Sericol 74(1):5–13Google Scholar
  31. van Oorschot RA, Treadwell S, Beaurepaire J, Holding NL, Mitchell RJ (2005) Beware of the possibility of fingerprinting techniques transferring DNA. J Forensic Sci 50(6):1417–1422PubMedGoogle Scholar
  32. Peters P (1993) Biotechnology, A Guide to Genetic Engineering. WmC Brown, DubuqueGoogle Scholar
  33. Prudhome JC, Couble P (2002) Perspectives in silkworm (Bombyx mori) transgenesis. Curr Sci 83(4):423–438Google Scholar
  34. Rao CGP, Chandrashekharaiah M (2003) Molecular Marker Assisted Breeding in silkworm. Concept paper for Mulberry Silkworm Breeders Summit, APSSRDI, Hindupur, 18–19, July 2003Google Scholar
  35. Reddy KD, Abraham EG, Nagaraju J (1999) Microsatellite in the silkworm, Bombyx mori: abundance, polymorphism and strain characterization. Genome 42(6):1057–1065CrossRefPubMedGoogle Scholar
  36. Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A 76(7):3116–3120CrossRefPubMedPubMedCentralGoogle Scholar
  37. Roach JC, Boysen C, Wang K, Hood L (1995) Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics 26:345–353CrossRefPubMedGoogle Scholar
  38. Ronald AH, van Oorschot RA, Jones MK (1997) DNA fingerprints from fingerprints. Nature 387(6635):767Google Scholar
  39. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  40. SilkDB (2017) Silkworm knowledge base website from China (http://silkworm.genomics.org.cn)
  41. Silkbase (2017) EST database and BAC library from Japan (www.ab.a.u-tokyo.ac.Jp/silkbase)
  42. SilkSatDB (2017) A microsatellite database of silkworm website from CDFD, India (www.cdfd.org.in/silksatdb)
  43. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517CrossRefPubMedGoogle Scholar
  44. Staden R (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 7:2601–2610CrossRefGoogle Scholar
  45. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16):6463–6471CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tazima Y (1962) The genetics of silkworm. Logos Press, Academic Press, London, p p253Google Scholar
  47. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354CrossRefPubMedPubMedCentralGoogle Scholar
  48. Vos P, Hogers R, Bleeker M, Reijans M, Van-de-Lee T, Homes M, Frijters A, Pot J, Poleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang J, Xia Q, He X, Dai M, Ruan J, Chen J, Yu G, Yuan H, Hu Y, Li R, Feng T, Ye C, Lu C, Wang J, Li S, Wong GKS, Yang H, Wang J, Xiang Z, Zhou Z, Yu J (2005) SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Res 33(Database issue):D399–D402CrossRefPubMedGoogle Scholar
  50. Watson JD (2007) Recombinant DNA: genes and genomes: a short course. San Francisco: W.H. Freeman. ISBN 0-7167-2866-4Google Scholar
  51. White O (1995) In: Waterman MS (ed) Introduction to computational biology: sequences, maps and genomes. Boca Raton, CRC PressGoogle Scholar
  52. Williums JGK, Kubelik AR, Livak KJ, Rafalaki JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6231–6235CrossRefGoogle Scholar
  53. Wolfe AD, Liston A (1998) Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ (eds) Plant molecular systematics-II. Kluwer, New York, pp 43–86CrossRefGoogle Scholar
  54. Wolfe AD, Xiang Q-Y, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat markers. Mol Ecol 7:1107–1125CrossRefPubMedGoogle Scholar
  55. Wu C, Kawasaki S, Yasukochi Y (1999) Construction and characterization of bacterial artificial chromosome libraries from the silkworm, Bombyx mori. Mol Gen Genet 261:698–706CrossRefPubMedGoogle Scholar
  56. Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940CrossRefPubMedGoogle Scholar
  57. Yamamoto K, Narukawa J, Kadono-Okuda K, Nohata J, Sasanuma M, Suetsugu Y, Banno Y, Fujii H, Goldsmith MR, Kazuei Mita K (2006) Construction of a single nucleotide polymorphism linkage map for the silkworm, Bombyx mori, based on bacterial artificial chromosome end sequences. Genetics 173(1):151–161CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yasukochi Y (1998) A dense genetic map of silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics 150:1513–1525PubMedPubMedCentralGoogle Scholar
  59. Yokoyama T (1973) The history of sericultural science in relation to industry. In: Smith RF, Mitter TE (eds) History of entomology. Annual Reviews, Palo Alto, pp 267–287Google Scholar
  60. Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Office Publication 0534 858 A1, Bulletin 93/13Google Scholar
  61. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karnataka State Sericulture Research and Development Institute ThalaghattapuraBangaloreIndia

Personalised recommendations