Skip to main content

Haemodynamic Monitoring During Anaesthesia

  • Chapter
  • First Online:
Practical Trends in Anesthesia and Intensive Care 2017

Abstract

Growing complexity of surgical and anaesthetic procedures requires a careful evaluation of the pre-operative patient status and an accurate intra-operative haemodynamic monitoring, considering the progressive increase of fragile and elderly population undergoing surgical procedures. Haemodynamic monitoring is not only an alert system avoiding misunderstanding errors (passive monitoring), but also a decisionmaking instrument for haemodynamic disarrangement evaluation (targeted or active monitoring) which allows prompt action. Haemodynamic monitoring is necessary for the global patient status assessment, both in the operating room and in intensive care unit. Monitoring devices are employed in an increasingly invasive and complex steps based on clinical examination and on the patient’s response to treatment. Appropriate and early application of diagnostic information from haemodynamic monitoring has been shown to reduce mortality and to improve outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinsky MR, Payen D. Functional hemodynamic monitoring. Crit Care. 2005;9:566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.

    Article  PubMed  Google Scholar 

  3. Pearse R, Dawson D, Fawcett J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9:R687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.

    Article  PubMed  Google Scholar 

  5. Pickering TG. Principles and techniques of blood pressure measurement. Cardiol Clin. 2002;20:207–23.

    Article  PubMed  Google Scholar 

  6. Amoore JN. Oscillometric sphygmomanometers: a critical appraisal of current technology. Blood Press Monit. 2012;17:80–8.

    Article  PubMed  Google Scholar 

  7. Parks JK, Elliott AC, Gentilello LM, et al. Systemic hypotension is a late marker of shock after trauma: a validation study of advanced trauma life support principles in a large national sample. Am J Surg. 2006;192:727–31.

    Article  PubMed  Google Scholar 

  8. Akkermans J, Diepeveen M, Ganzevoort W, et al. Continuous non-invasive blood pressure monitoring, a validation study of Nexfin in a pregnant population. Hypertens Pregnancy. 2009;28:230–42.

    Article  CAS  PubMed  Google Scholar 

  9. Stover JF, Stocker R, Lenherr R, et al. Noninvasive cardiac output and blood pressure monitoring cannot replace an invasive monitoring system in critically ill patients. BMC Anesthesiol. 2009;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Van de Vijver K, Verstraeten A, Gillbert C, et al. Validation of non-invasive hemodynamic monitoring with Nexfin in critically ill patients. Crit Care. 2011;15:P75.

    Article  PubMed Central  Google Scholar 

  11. Bellomo R, Uchino S. Cardiovascular monitoring tools: use and misuse. Curr Opin Crit Care. 2003;9:225–9.

    Article  PubMed  Google Scholar 

  12. Cullen DJ, Kirby RR. Beach chair position may decrease cerebral perfusion; catastrophic outcomes have occurred. APSF Newsl. 2007;22:25–7.

    Google Scholar 

  13. Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–7.

    Article  PubMed  Google Scholar 

  14. Shah MR, Hasselblad V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–70.

    Article  CAS  PubMed  Google Scholar 

  15. Vincent JL, Pinsky MR, Sprung CL, et al. The pulmonary artery catheter: in medio stat virtus. Crit Care Med. 2008;36:3093–6.

    Article  PubMed  Google Scholar 

  16. Wilson J, Woods I, Fawcett J, et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999;318:1099–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shoemaker WC, Appel PL, Kram HB, et al. Prospective trial of supranormal values of survivors as therapeutic goals in highrisk surgical patients. Chest. 1988;94:1176–86.

    Article  CAS  PubMed  Google Scholar 

  18. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–707.

    Article  CAS  PubMed  Google Scholar 

  19. Lobo SM, Salgado PF, Castillo VG, et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000;28:3396–404.

    Article  CAS  PubMed  Google Scholar 

  20. Hayes MA, Timmins AC, Yau EH, et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.

    Article  CAS  PubMed  Google Scholar 

  21. Gattinoni L, Brazzi L, Pelosi P, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333:1025–32.

    Article  CAS  PubMed  Google Scholar 

  22. Heyland DK, Cook DJ, King D, et al. Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med. 1996;24:517–24.

    Article  CAS  PubMed  Google Scholar 

  23. Hollenberg SM, Kavinsky CJ, Parrillo JE. Cardiogenic shock. Ann Intern Med. 1999;131:47–59.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.

    Article  PubMed  Google Scholar 

  25. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  26. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.

    Article  CAS  PubMed  Google Scholar 

  28. De Backer D, Heenen S, Piagnerelli M, et al. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.

    Article  PubMed  Google Scholar 

  29. Kobayashi M, Koh M, Irinoda T, et al. Stroke volume variation as a predictor of intravascular volume depression and possible hypotension during the early postoperative period after esophagectomy. Ann Surg Oncol. 2009;16:1371–7.

    Article  PubMed  Google Scholar 

  30. Berkenstadt H, Margalit N, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.

    Article  CAS  PubMed  Google Scholar 

  31. Reuter DA, Felbinger TW, Schmidt C, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392–8.

    Article  PubMed  Google Scholar 

  32. Monnet X, Rienzo M, Osman D, et al. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;31:1195–201.

    Article  PubMed  Google Scholar 

  33. Rhodes A, Sunderland R. Arterial pulse power analysis: the LiDCO plus system. In: Vincent JL, Pinksy MR, Payen D, editors. Functional hemodynamic monitoring. Berlin: Springer; 2004.

    Google Scholar 

  34. Michard F. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8.

    Article  PubMed  Google Scholar 

  35. Hofer CK, Furrer L, Matter-Ensner S, et al. Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth. 2005;94:748–55.

    Article  CAS  PubMed  Google Scholar 

  36. Hofer CK, Muller SM, Furrer L, et al. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005;128:848–54.

    Article  PubMed  Google Scholar 

  37. Hamilton TT, Huber LM, Jessen ME. PulseCO: a less-invasive method to monitor cardiac output from arterial pressure after cardiac surgery. Ann Thorac Surg. 2002;74:S1408–12.

    Article  PubMed  Google Scholar 

  38. Kiefer N, Hofer CK, Marx G, et al. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care. 2012;16:R98.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marik PE. Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth. 2012;27:121–34.

    Article  PubMed  Google Scholar 

  40. Biancofiore G, Critchley LA, Lee A, et al. Evaluation of a new software version of the FloTrac/Vigileo (version 3.02) and a comparison with previous data in cirrhotic patients undergoing liver transplant surgery. Anesth Analg. 2011;113:515–22.

    PubMed  Google Scholar 

  41. Cecconi M, Fasano N, Langiano N, et al. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care. 2011;15:R132.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Benes J, Chytra I, Altmann P, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14:R118.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Romagnoli S, Bevilacqua S, Lazzeri C, Ciappi F, Dini D, Pratesi C, Gensini GF, Romano SM. Most care: a minimally invasive system for hemodynamic monitoring powered by the pressure recording analytical method (PRAM). HSR Pro Intensive Care Cardiovasc Anesth. 2009;1(2):20–7.

    CAS  Google Scholar 

  44. Romano SM, Pistolesi M. Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med. 2002;30:1834–41.

    Article  PubMed  Google Scholar 

  45. Kapoor PM, Kakani M, Chowdhury U, et al. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth. 2008;11:27–34.

    Article  PubMed  Google Scholar 

  46. Lopes MR, Oliveira MA, Pereira VO, et al. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suehiro K, Okutani R. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing one-lung ventilation. J Cardiothorac Vasc Anesth. 2010;24:772–5.

    Article  PubMed  Google Scholar 

  48. Kurita T, Morita K, Kato S, et al. Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth. 1997;79:770–5.

    Article  CAS  PubMed  Google Scholar 

  49. Halvorsen PS, Espinoza A, Lundblad R, et al. Agreement between PiCCO pulse-contour analysis, pulmonal artery thermodilution and transthoracic thermodilution during off-pump coronary artery by-pass surgery. Acta Anaesthesiol Scand. 2006;50:1050–7.

    Article  CAS  PubMed  Google Scholar 

  50. Conway DH, Mayall R, Abdul-Latif MS, et al. Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia. 2002;57:845–9.

    Article  CAS  PubMed  Google Scholar 

  51. Guinot PG, de Broca B, Abou Arab O, Diouf M, Badoux L, et al. Ability of stroke volume variation measured by oesophageal Doppler monitoring to predict fluid responsiveness during surgery. Br J Anaesth. 2013;110:28–33.

    Article  PubMed  Google Scholar 

  52. Broch O, Renner J, Gruenewald M, Meybohm P, Schöttler J, et al. A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia. 2012;67:377–83.

    Article  CAS  PubMed  Google Scholar 

  53. Yin JY, Ho KM. Use of plethysmographic variability index derived from the Massimo® pulse oximeter to predict fluid or preload responsiveness: a systematic review and meta-analysis. Anaesthesia. 2012;67:777–83.

    Article  CAS  PubMed  Google Scholar 

  54. Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30:1210–3.

    Article  PubMed  Google Scholar 

  55. Hemnes AR, Newman AL, Rosenbaum B, et al. Bedside end-tidal CO2 tension as a screening tool to exclude pulmonary embolism. Eur Respir J. 2010;35:735–41.

    Article  CAS  PubMed  Google Scholar 

  56. Summers RL, Shoemaker WC, Peacock WF, et al. Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med. 2003;10:669–80.

    Article  PubMed  Google Scholar 

  57. Squara P, Denjean D, Estagnasie P, et al. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33:1191–4.

    Article  PubMed  Google Scholar 

  58. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583–9.

    Article  CAS  PubMed  Google Scholar 

  59. Benomar B, Ouattara A, Estagnasie P, et al. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36:1875–81.

    Article  PubMed  Google Scholar 

  60. Waldron NH, Miller TE, Nardiello J et al. NICOM versus EDM guided goal directed fluid therapy in the perioperative period. ASA, 2011. P. A680.

    Google Scholar 

  61. Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: rapid ultrasound in shock in the evaluation of the critically lll. Emerg Med Clin North Am. 2010;28:29–56.

    Article  PubMed  Google Scholar 

  62. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30:1740–6.

    PubMed  Google Scholar 

  63. Reeves ST, Finley AC, Skubas NJ, Swaminathan M, Whitley WS, et al. Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:443–56.

    Article  PubMed  Google Scholar 

  64. Cioccari L, Baur HR, Berger D, Wiegand J, Takala J, et al. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiography probe. Crit Care. 2013;17:R121.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rhodes A, Cecconi M, Hamilton M, Poloniecki J, Woods J, Boyd O, et al. Grounds goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med. 2010;36:1327–32.

    Article  PubMed  Google Scholar 

  66. Suehiro K, Joosten A, Alexander B, Cannesson M. Guiding goal directed therapy. Curr Anesthesiol Rep. 2014;4:360–75.

    Article  Google Scholar 

  67. Arulkumaran N, Corredor C, Hamilton MA, Ball J, Grounds RM, Rhodes A, et al. Cardiac complications associated with goal-directed therapy in high-risk surgical patients: a meta-analysis. Br J Anaesth. 2014;112(4):648–59.

    Article  CAS  PubMed  Google Scholar 

  68. Gurgel S, do Nascimento P. Maintaining tissue perfusion in high risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;6:1384–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Tritapepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frasacco, G., Tritapepe, L. (2018). Haemodynamic Monitoring During Anaesthesia. In: Chiumello, D. (eds) Practical Trends in Anesthesia and Intensive Care 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-61325-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61325-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61324-6

  • Online ISBN: 978-3-319-61325-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics