Skip to main content

Accurate Pricing of Swaptions via Lower Bound

  • Chapter
  • First Online:
Handbook of Recent Advances in Commodity and Financial Modeling

Abstract

We propose a new lower bound for pricing European-style swaptions for a wide class of interest rate models. This method is applicable whenever the joint characteristic function of the state variables is either known in closed form or can be obtained numerically via some efficient procedure. Our lower bound involves the computation of a one dimensional Fourier transform independently of the underlying swap length. Finally the bound can be used as a control variate to reduce the confidence interval in the Monte Carlo simulation. We test our bound on different affine models, also allowing for jumps. The lower bound is found to be accurate and computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CVA of a contract price C(t) is the risk neutral expectation of the loss

    $$\displaystyle{ CV A(t):= LDG\:\int _{0}^{T}\mathbb{E}[e^{-\int _{0}^{t}r(s)ds}max(C(t), 0)]\:d\mathbb{P}_{ D}(t), }$$

    where LGD is the Loss Given Default and \(\mathbb{P}_{D}(t)\) is the default probability in the interval (t, t + dt). Risk adjusted price is: C(t) − CV A(t).

  2. 2.

    C.V.A. of an interest rate swap with payment dates T 1, , T n and fixed rate R, can be approximated by the following portfolio of swaptions:

    $$\displaystyle\begin{array}{rcl} CV A(t) \simeq LGD\:\sum _{i=1}^{n}\mathbb{P}_{ D}(T_{i-1},T_{i}) \cdot SWO(t,\{T_{h}\}_{i-1}^{n},R).& & {}\\ \end{array}$$

    .

  3. 3.

    N ±(t) represent the number of positive or negative jumps before the time t.

  4. 4.

    A semi-analytical solution for functions \(\tilde{A}(\tau,\boldsymbol{\lambda } )\) and \(\tilde{B}_{3}(\tau,\boldsymbol{\lambda } )\) is available but it requires the evaluation of Kummer’s functions of the first and second kind. Kummer’s functions are not analytic but have series and integral representation. However we find that the numerical solution of the ODE system is much more efficient than the evaluation of the semi analytical form.

  5. 5.

    Note that we use the quantile function of a Student’s t distribution.

  6. 6.

    Schrager and Pelsser (2006) and Duffie and Singleton (1997) for the 2-factors C.I.R. model.

  7. 7.

    diag(\(\boldsymbol{\sigma }\)) means the diagonalization of the vector \(\boldsymbol{\sigma }\) and chol(ρ) means the Cholesky decomposition of the correlation matrix ρ, where \(\boldsymbol{\sigma }\) and ρ are the volatility vector and the correlation matrix, respectively, of the original paper.

References

  • P. Balduzzi, S.R. Das, S. Foresi, R. Sundaram, A simple approach to three-factor affine term structure models. J. Fixed Income 6(3), 43–54 (1996)

    Article  Google Scholar 

  • R. Caldana, G. Fusai, A. Gnoatto, M. Grasselli, General closed-form basket option pricing bounds. Working paper, posted at ssrn.com in Jan 2014

    Google Scholar 

  • P. Carr, D.P. Madan, Option valuation using the fast Fourier transform. J. Comput. Financ. 2, 61–73 (2000)

    Article  Google Scholar 

  • P. Collin-Dufresne, R.S. Goldstein, Pricing swaptions within an affine framework. J. Deriv. 10, 9–26 (2002)

    Article  Google Scholar 

  • D. Duffie, R. Kan, A yield-factor model of interest rates. Math. Financ. 6, 379–406 (1996)

    Article  Google Scholar 

  • D. Duffie, P. Pan, K. Singleton, Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  Google Scholar 

  • D. Duffie, K. Singleton, An econometric model of the term structure of interest-rate swap yields. J. Financ. 52, 1287–1321 (1997)

    Article  Google Scholar 

  • C. Munk, Stochastic duration and fast coupon bond option pricing in multi-factor models. Rev. Deriv. Res. 3, 157–181 (1999)

    Article  Google Scholar 

  • D.F. Schrager, A.J. Pelsser, Pricing swaptions and coupon bond options in affine term structure models. Math. Financ. 16, 673–694 (2006)

    Article  Google Scholar 

  • K.J. Singleton, L. Umantsev, Pricing coupon-bond options and swaptions in affine term structure models. Math. Financ. 12, 427–446 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Gambaro .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Proof Proposition 1

We consider the lower bound to the swaption price as in formula (9.4) for affine models:

$$\displaystyle\begin{array}{rcl} & & LB(k;t,T,\{T_{h}\}_{h=1}^{n},R) = P(t,T) \cdot \mathbb{E}_{ t}^{T}\left [\left (\sum _{ h=1}^{n}w_{ h}\:e^{\mathbf{b}_{h}^{\top }\mathbf{X}(T)+a_{ h}} - 1\right )I(\mathcal{G})\right ]^{+} {}\\ \end{array}$$

where the set \(\mathcal{G} =\{\omega \in \Omega: g(\mathbf{X}(T)) \geq k\} =\{\omega \in \Omega:\boldsymbol{\beta } ^{\top }\mathbf{X}(T)+\alpha \geq k\}\).

According to Carr and Madan (2000), we introduce the dampening factor e δk, then we apply the Fourier Transform with respect to the variable k to the T-forward expected value and we obtain:

$$\displaystyle\begin{array}{rcl} \psi _{\delta }(\gamma )& =& \int _{-\infty }^{+\infty }e^{i\gamma k+\delta k}\mathbb{E}_{ t}^{T}\left [\left (\sum _{ h=1}^{n}w_{ h}\:e^{\mathbf{b}_{h}^{\top }\mathbf{X}(T)+a_{ h}} - 1\right )I(g(\mathbf{X}(T)) \geq k)\right ]dk {}\\ & =& \mathbb{E}_{t}^{T}\left [\left (\sum _{ h=1}^{n}w_{ h}\:e^{\mathbf{b}_{h}^{\top }\mathbf{X}(T)+a_{ h}} - 1\right )\int _{-\infty }^{+\infty }e^{i\gamma k+\delta k}I(\boldsymbol{\beta }^{\top }\mathbf{X}(T)+\alpha \geq k)dk\right ] {}\\ & =& \mathbb{E}_{t}^{T}\left [\left (\sum _{ h=1}^{n}w_{ h}\:e^{\mathbf{b}_{h}^{\top }\mathbf{X}(T)+a_{ h}} - 1\right )\int _{-\infty }^{\boldsymbol{\beta }^{\top }\mathbf{X}(T)+\alpha }e^{i\gamma k+\delta k}dk\right ] {}\\ \end{array}$$

Since the dampening factor δ is positive, then the module of the integrand function decays exponentially for k → − and the Fourier Transform is well defined, so:

$$\displaystyle\begin{array}{rcl} \psi _{\delta }(\gamma )& =& \mathbb{E}_{t}^{T}\left [\left (\sum _{ h=1}^{n}w_{ h}e^{\mathbf{b}_{h}^{\top }\mathbf{X}(T)+a_{ h}} - 1\right )e^{(i\gamma +\delta )(\boldsymbol{\beta }^{\top }\mathbf{X}(T)) }\right ]\frac{e^{(i\gamma +\delta )\alpha }} {i\gamma +\delta } {}\\ \end{array}$$

Using the characteristic function of X, calculated under the T-forward measure: \(\Phi (\boldsymbol{\lambda }) = \mathbb{E}_{t}^{T}\left [e^{i\boldsymbol{\lambda }^{\top }\mathbf{X} }\right ]\), the function ψ δ (γ) can be written as:

$$\displaystyle\begin{array}{rcl} \psi _{\delta }(\gamma )& =& \left (\sum _{h=1}^{n}w_{ h}e^{a_{h} }\Phi \left (-i\mathbf{b}_{h} + (\gamma -i\delta )\boldsymbol{\beta }\right ) - \Phi \left ((\gamma -i\delta )\boldsymbol{\beta }\right )\right )\frac{e^{(i\gamma +\delta )\alpha }} {i\gamma +\delta } {}\\ \end{array}$$

Finally the lower bound is the maximum with respect to k of the inverse transform of ψ δ (γ):

$$\displaystyle\begin{array}{rcl} & & LB(k;t,T,\{T_{h}\}_{h=1}^{n},R) = P(t,T)\:\frac{e^{-\delta k}} {\pi } \int _{0}^{+\infty }e^{-i\gamma k}\psi _{ \delta }(\gamma )d\gamma {}\\ \end{array}$$

1.2 A.2 Proof of the Analytical Lower Bound for Gaussian Affine Models

\(\mathbf{X} \sim N(\boldsymbol{\mu },V )\) in T-forward measure and \(g(\mathbf{X}(T)) =\boldsymbol{\beta } ^{\top }\mathbf{X}+\alpha \sim N(\boldsymbol{\beta }^{\top }\boldsymbol{\mu }+\alpha,\:\boldsymbol{\beta }^{\top }V \boldsymbol{\beta })\)

Then the approximate exercise region \(\mathcal{G}\) becomes:

$$\displaystyle\begin{array}{rcl} \mathcal{G} =\{\omega \in \Omega: g(\mathbf{X}(T))> k\} =\{\omega \in \Omega: z> d\}& & {}\\ \end{array}$$

where z is a standard normal random variable and

$$\displaystyle{d = \frac{k -\boldsymbol{\beta }^{\top }\boldsymbol{\mu }-\alpha } {\sqrt{\boldsymbol{\beta }^{\top } V\boldsymbol{\beta }}}.}$$

The lower bound expression can be written using the law of iterative expectation:

$$\displaystyle\begin{array}{rcl} & & LB(k; t,T,\{T_{h}\}_{h=1}^{n},R) = P(t,T)\:\mathbb{E}_{ t}^{T}\left [\mathbb{E}_{ t}^{T}\left [\left (\sum _{ h=1}^{n}w_{ h}e^{\mathbf{b}_{h} ^{\top } \mathbf{X}(T)+a_{h} } -1\right )\vert z\right ]I(z> d)\right ] {}\\ \end{array}$$

Conditionally to the random variable z, the variable X is distributed as a multivariate normal with mean and variance:

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}_{t}^{T}[\mathbf{X}\vert z] =\boldsymbol{\mu } +z \cdot \mathbf{v} {}\\ & & V ar(\mathbf{X}\vert z) = V -\mathbf{v}\mathbf{v}^{\top } {}\\ & &\mathbf{v} = \frac{V \boldsymbol{\beta }} {\sqrt{\boldsymbol{\beta }^{\top } V\boldsymbol{\beta }}} {}\\ \end{array}$$

We can now compute the inner expectation, using the normal distribution property:

$$\displaystyle\begin{array}{rcl} LB(k; t,T,\{T_{h}\}_{h=1}^{n},R)& =& P(t,T)\left (\sum _{ h=1}^{n}w_{ h}\:\mathbb{E}_{t}^{T}\left [e^{\mathbf{b}_{h}^{\top }\boldsymbol{\mu }+z\mathbf{b}_{h}^{\top }\mathbf{v}+\frac{1} {2} V _{h} }I(z> d)\right ] -\mathbb{E}_{t}^{T}\left [I(z> d)\right ]\right ){}\\ \end{array}$$

where V h = b h (Vvv )b h .

Maximizing with respect to k, involved in the definition of d, we found the lower bound:

$$\displaystyle\begin{array}{rcl} LB(t,T,\{T_{h}\}_{h=1}^{n},R) =\max _{ k\in \mathbb{R}}\left (\sum _{h=1}^{n}w_{ h}e^{a_{h}+\mathbf{b}_{h}^{\top }\boldsymbol{\mu }+\frac{1} {2} V _{h}+\frac{1} {2} d_{h}^{2} }N(d_{h} - d) - N(-d)\right )& & {}\\ \end{array}$$

where d h = b h v and N(x) is the cumulative distribution function of standard normal variable.

To make faster the optimization of the lower bound with respect to the parameter k, we compute the first order approximation of maximum point as a starting point. Equation for stationary points:

$$\displaystyle\begin{array}{rcl} \frac{\partial LB(t,k)} {\partial k} & =& \frac{P(t,T)} {\sqrt{\boldsymbol{\beta }^{\top } V\boldsymbol{\beta }}} \left (\sum _{h=1}^{n}w_{ h}e^{a_{h}+\mathbf{b}_{h}^{\top }\boldsymbol{\mu }+\frac{1} {2} V _{h}+d_{h}^{2}/2 }N^{{\prime}}(-(d - d_{ h})) - N^{{\prime}}(-d)\right ) = 0{}\\ \end{array}$$

Taylor first order expansion:

$$\displaystyle{ N^{{\prime}}(-(d - d_{ h})) = N^{{\prime}}(-d) + d_{ h}N^{{\prime\prime}}(-d) + o(d_{ h}) = N^{{\prime}}(-d)(1 + dd_{ h}) + o(d_{h}) }$$

We substitute the first order expansion in the derivative expression and we obtain:

$$\displaystyle{ \sum _{h=1}^{n}w_{ h}e^{a_{h}+\mathbf{b}_{h}^{\top }\boldsymbol{\mu }+\frac{1} {2} V _{h}+d_{h}^{2}/2 }(1 + dd_{h}) - 1 = 0 }$$

So the first order guess of the maximum point is:

$$\displaystyle\begin{array}{rcl} d_{guess}& =& \frac{1 -\sum _{h=1}^{n}w_{h}e^{a_{h}+\mathbf{b}_{h}^{\top }\boldsymbol{\mu }+\frac{1} {2} V _{h}+d_{h}^{2}/2 }} {\sum _{h=1}^{n}w_{h}e^{a_{h}+\mathbf{b}_{h}^{\top }\boldsymbol{\mu }+\frac{1} {2} V _{h}+d_{h}^{2}/2 }d_{h}} {}\\ k_{guess}& =& \sqrt{\boldsymbol{\beta }^{\top } V\boldsymbol{\beta }}\:d_{guess} +\boldsymbol{\beta } ^{\top }\boldsymbol{\mu }+\alpha {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gambaro, A.M., Caldana, R., Fusai, G. (2018). Accurate Pricing of Swaptions via Lower Bound. In: Consigli, G., Stefani, S., Zambruno, G. (eds) Handbook of Recent Advances in Commodity and Financial Modeling. International Series in Operations Research & Management Science, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-319-61320-8_9

Download citation

Publish with us

Policies and ethics