Skip to main content

Fetal Examination for Hydrocephalus

  • Chapter
  • First Online:
Hydrocephalus

Abstract

Examination of fetal hydrocephalus necessitates initial detection by ultrasound imaging. With the advent of ultrafast magnetic resonance sequences, many clinicians favor further analysis by magnetic resonance imaging (MRI). Recent advances in ultrasound technology have produced image qualities similar to those of MRI.

In this chapter, we describe various imaging modalities that have made it possible to definitively diagnose and classify fetal hydrocephalus, with a few novel modalities that are sure to be used more in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Moore KL, Persaud TVN, Torchia MG. The developing human: clinically oriented embryology. Amsterdam: Elsevier Health Sciences; 2015.

    Google Scholar 

  2. Müller F, O’Rahilly R. The human brain at stage 16, including the initial evagination of the neurohypophysis. Anat Embryol. 1989;179(6):551–69.

    Article  PubMed  Google Scholar 

  3. Müller F, O’Rahilly R. The human brain at stage 17, including the appearance of the future olfactory bulb and the first amygdaloid nuclei. Anat Embryol. 1989;180(4):353–69.

    Article  PubMed  Google Scholar 

  4. Müller F, O’Rahilly R. The development of the human brain from a closed neural tube at stage 13. Anat Embryol. 1988;177(3):203–24.

    Article  PubMed  Google Scholar 

  5. Müller F, O’Rahilly R. The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol. 1988;177(6):495–511.

    Article  PubMed  Google Scholar 

  6. O’Rahilly R, Müller F. The development of the neural crest in the human. J Anat. 2007;211(3):335–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. O’Rahilly R, Müller F. Ventricular system and choroid plexuses of the human brain during the embryonic period proper. Am J Anat. 1990;189(4):285–302.

    Article  PubMed  Google Scholar 

  8. Hans J, Lammens M, Hori A. Clinical neuroembryology: development and developmental disorders of the human central nervous system. New York: Springer; 2014.

    Google Scholar 

  9. Campbell S. A short history of sonography in obstetrics and gynaecology. Facts Views Vis Obgyn. 2013;5(3):213.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kurjak A, Chervenak FA. Donald School textbook of ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Publishers; 2011.

    Book  Google Scholar 

  11. Bushberg JT, Boone JM. The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  12. Kremkau FW, Forsberg F. Sonography principles and instruments. Amsterdam: Elsevier Health Sciences; 2015.

    Google Scholar 

  13. Kim MS, Jeanty P, Turner C, Benoit B. Three-dimensional sonographic evaluations of embryonic brain development. J Ultrasound Med. 2008;27(1):119–24.

    Article  PubMed  Google Scholar 

  14. International Society of Ultrasound in Obstetrics & Gynecology Education Committee. Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’. Ultrasound Obstet Gynecol. 2007;29(1):109.

    Article  Google Scholar 

  15. Malinger G, Lev D, Lerman-Sagie T. Normal and abnormal fetal brain development during the third trimester as demonstrated by neurosonography. Eur J Radiol. 2006;57(2):226–32.

    Article  CAS  PubMed  Google Scholar 

  16. Chudleigh T, Smith A, Cumming S. Obstetric & gynaecological ultrasound: how, why and when. Amsterdam: Elsevier Health Sciences; 2016.

    Google Scholar 

  17. Salomon LJ, Alfirevic Z, Bilardo CM, Chalouhi GE, Ghi T, Kagan KO, Lau TK, Papageorghiou AT, Raine-Fenning NJ, Stirnemann J, Suresh S. ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol. 2013;41(1):102.

    Article  CAS  PubMed  Google Scholar 

  18. Endres LK, Cohen L. Reliability and validity of three-dimensional fetal brain volumes. J Ultrasound Med. 2001;20(12):1265–9.

    Article  CAS  PubMed  Google Scholar 

  19. Malinger G, Svirsky R, Ben-Haroush A, Golan A, Bar J. Doppler-flow velocity indices in fetal middle cerebral artery in unilateral and bilateral mild ventriculomegaly. J Matern Fetal Neonatal Med. 2011;24(3):506–10.

    Article  PubMed  Google Scholar 

  20. Zalel Y, Almog B, Seidman DS, Achiron R, Lidor A, Gamzu R. The resistance index in the fetal middle cerebral artery by gestational age and ventricle size in a normal population. Obstet Gynecol. 2002;100(6):1203–7.

    PubMed  Google Scholar 

  21. Degani S. Evaluation of fetal cerebrovascular circulation and brain development: the role of ultrasound and Doppler. Semin Perinatol. 2009;33(4):259–69. WB Saunders.

    Article  PubMed  Google Scholar 

  22. D’addario V, Rossi AC. Neuroimaging of ventriculomegaly in the fetal period. Semin Fetal Neonatal Med. 2012;17(6):310–8. WB Saunders.

    Article  PubMed  Google Scholar 

  23. Curnes JT, Oakes WJ, Boyko OB. MR imaging of hindbrain deformity in Chiari II patients with and without symptoms of brainstem compression. Am J Neuroradiol. 1989;10(2):293–302.

    CAS  PubMed  Google Scholar 

  24. Hadley DM. The Chiari malformations. J Neurol Neurosurg Psychiatry. 2002;72(2):ii38–40.

    PubMed  PubMed Central  Google Scholar 

  25. Bosemani T, Orman G, Boltshauser E, Tekes A, Huisman TA, Poretti A. Congenital abnormalities of the posterior fossa. Radiographics. 2015;35(1):200–20.

    Article  PubMed  Google Scholar 

  26. Mirsky DM, Schwartz ES, Zarnow DM. Diagnostic features of myelomeningocele: the role of ultrafast fetal MRI. Fetal Diagn Ther. 2014;37(3):219–25.

    Article  PubMed  Google Scholar 

  27. Shaer CM, Chescheir N, Schulkin J. Myelomeningocele: a review of the epidemiology, genetics, risk factors for conception, prenatal diagnosis, and prognosis for affected individuals. Obstet Gynecol Surv. 2007;62(7):471–9.

    Article  PubMed  Google Scholar 

  28. Pilu G, Visentin A, Valeri B. The Dandy–Walker complex and fetal sonography. Ultrasound Obstet Gynecol. 2000;16(2):115–7.

    Article  CAS  PubMed  Google Scholar 

  29. Mavili E, Coskun A, Per H, Donmez H, Kumandas S, Yikilmaz A. Polymicrogyria: correlation of magnetic resonance imaging and clinical findings. Childs Nerv Syst. 2012;28(6):905–9.

    Article  PubMed  Google Scholar 

  30. Dhombres F, Nahama-Allouche C, Gelot A, Jouannic JM, Billette de Villemeur T, Saint-Frison MH, Ducou le Pointe H, Garel C. Prenatal ultrasonographic diagnosis of polymicrogyria. Ultrasound Obstet Gynecol. 2008;32(7):51–4.

    Article  Google Scholar 

  31. Kfir M, Yevtushok L, Onishchenko S, Wertelecki W, Bakhireva L, Chambers CD, Jones KL, Hull AD. Can prenatal ultrasound detect the effects of in-utero alcohol exposure? A pilot study. Ultrasound Obstet Gynecol. 2009;33(6):683–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barkovich AJ, Koch TK, Carrol CL. The spectrum of lissencephaly: report of ten patients analyzed by magnetic resonance imaging. Ann Neurol. 1991;30(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  33. Benacerraf BR. Ultrasound of fetal syndromes. Amsterdam: Elsevier Health Sciences; 2008.

    Google Scholar 

  34. Chen CP. Prenatal findings and the genetic diagnosis of fetal overgrowth disorders: Simpson-Golabi-Behmel syndrome, Sotos syndrome, and Beckwith-Wiedemann syndrome. Taiwan J Obstet Gynecol. 2012;51(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  35. Marín R, Ley-Martos M, Gutiérrez G, Rodríguez-Sánchez F, Arroyo D, Mora-López F. Three cases with L1 syndrome and two novel mutations in the L1CAM gene. Eur J Pediatr. 2015;174(11):1541–4.

    Article  PubMed  CAS  Google Scholar 

  36. Cheon JE, Kim IO, Hwang YS, Kim KJ, Wang KC, Cho BK, Chi JG, Kim CJ, Kim WS, Yeon KM. Leukodystrophy in children: a pictorial review of MR imaging features. Radiographics. 2002;22(3):461–76.

    Article  PubMed  Google Scholar 

  37. Rode ME, Mennuti MT, Giardine RM, Zackai EH, Driscoll DA. Early ultrasound diagnosis of Neu–Laxova syndrome. Prenat Diagn. 2001;21(7):575–80.

    Article  CAS  PubMed  Google Scholar 

  38. Ickowicz V, Eurin D, Maugey-Laulom B, Didier F, Garel C, Gubler MC, Laquerriere A, Avni EF. Meckel-Grüber syndrome: sonography and pathology. Ultrasound Obstet Gynecol. 2006;27(3):296–300.

    Article  CAS  PubMed  Google Scholar 

  39. Bethune M. Literature review and suggested protocol for managing ultrasound soft markers for Down syndrome: thickened nuchal fold, echogenic bowel, shortened femur, shortened humerus, pyelectasis and absent or hypoplastic nasal bone. Australas Radiol. 2007;51(3):218–25.

    Article  CAS  PubMed  Google Scholar 

  40. Benaicha A, Dommergues M, Jouannic JM, Jacquette A, Alexandre M, Le Merrer M, Ducou Le Pointe H, Garel C. Prenatal diagnosis of brachytelephalangic chondrodysplasia punctata: case report. Ultrasound Obstet Gynecol. 2009;34(6):724–6.

    Article  CAS  PubMed  Google Scholar 

  41. Burrows PE, Stannard MW, Pearrow J, Sutterfield S, Baker ML. Early antenatal sonographic recognition of thanatophoric dysplasia with cloverleaf skull deformity. Am J Roentgenol. 1984;143(4):841–3.

    Article  CAS  Google Scholar 

  42. Ritner JA, Frates MC. Fetal CNS: a systematic approach. Radiol Clin N Am. 2014;52(6):1253–64.

    Article  PubMed  Google Scholar 

  43. Levitsky DB, Mack LA, Nyberg DA, Shurtleff DB, Shields LA, Nghiem HV, Cyr DR. Fetal aqueductal stenosis diagnosed sonographically: how grave is the prognosis? AJR Am J Roentgenol. 1995;164(3):725–30.

    Article  CAS  PubMed  Google Scholar 

  44. Emery SP, Greene S, Hogge WA. Fetal therapy for isolated aqueductal stenosis. Fetal Diagn Ther. 2015;38(2):81–5.

    Article  PubMed  Google Scholar 

  45. Elchalal U, Yagel S, Gomori JM, Porat S, Beni-Adani L, Yanai N, Nadjari M. Fetal intracranial hemorrhage (fetal stroke): does grade matter? Ultrasound Obstet Gynecol. 2005;26(3):233–43.

    Article  CAS  PubMed  Google Scholar 

  46. Sauerbrei A, Wutzler P. The congenital varicella syndrome. J Perinatol. 2000;20(8):548.

    Article  CAS  PubMed  Google Scholar 

  47. Brown ZA, Selke S, Zeh J, Kopelman J, Maslow A, Ashley RL, Watts DH, Berry S, Herd M, Corey L. The acquisition of herpes simplex virus during pregnancy. N Engl J Med. 1997;337(8):509–16.

    Article  CAS  PubMed  Google Scholar 

  48. Haratz KK, Oliveira PS, Rolo LC, Nardozza LM, Milani HF, Barreto EQ, Araujo Júnior E, Ajzen SA, Moron AF. Fetal cerebral ventricle volumetry: comparison between 3D ultrasound and magnetic resonance imaging in fetuses with ventriculomegaly. J Matern Fetal Neonatal Med. 2011;24(11):1384–91.

    Article  PubMed  Google Scholar 

  49. Hata T, Mori N, Tenkumo C, Hanaoka U, Kanenishi K, Tanaka H. Three-dimensional volume-rendered imaging of normal and abnormal fetal fluid-filled structures using inversion mode. J Obstet Gynaecol Res. 2011;37(11):1748–54.

    Article  PubMed  Google Scholar 

  50. Rizzo G, Capponi A, Persico N, Ghi T, Nazzaro G, Boito S, Pietrolucci ME, Arduini D. 5D CNS+ software for automatically imaging axial, sagittal, and coronal planes of normal and abnormal second-trimester fetal brains. J Ultrasound Med. 2016;35(10):2263–72.

    Article  PubMed  Google Scholar 

  51. Kurjak A, Stanojević M, Predojević M, Laušin I, Salihagić-Kadić A. Neurobehavior in fetal life. Semin Fetal Neonatal Med. 2012;17(6):319–23.

    Article  CAS  PubMed  Google Scholar 

  52. Hata T. Current status of fetal neurodevelopmental assessment: four-dimensional ultrasound study. J Obstet Gynaecol Res. 2016;42(10):1211–21.

    Article  PubMed  Google Scholar 

  53. Clouchoux C, Limperopoulos C. Novel applications of quantitative MRI for the fetal brain. Pediatr Radiol. 2012;42(S1):24–32.

    Article  Google Scholar 

  54. Pooley RA. Fundamental physics of MR imaging. Radiographics. 2005;25(4):1087–99.

    Article  PubMed  Google Scholar 

  55. Saleem SN. Fetal MRI: an approach to practice: a review. J Adv Res. 2014;5(5):507–23.

    Article  CAS  PubMed  Google Scholar 

  56. Prayer D. Fetal MRI. 1st ed. Berlin: Springer; 2011.

    Book  Google Scholar 

  57. Levine D, Hatabu H, Gaa J, Atkinson MW, Edelman RR. Fetal anatomy revealed with fast MR sequences. AJR Am J Roentgenol. 1996;167(4):905–8.

    Article  CAS  PubMed  Google Scholar 

  58. Brown JS, Levine D. MR volumetry of brain and CSF in fetuses referred for ventriculomegaly. AJR Am J Roentgenol. 2007;189(1):145–51.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Glenn OA, Barkovich AJ. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. Am J Neuroradiol. 2006;27(8):1604–11.

    CAS  PubMed  Google Scholar 

  60. Mailath-Pokorny M, Kasprian G, Mitter C, Schöpf V, Nemec U, Prayer D. Magnetic resonance methods in fetal neurology. Semin Fetal Neonatal Med. 2012;17(5):278–84.

    Article  CAS  PubMed  Google Scholar 

  61. Morris JE, Rickard S, Paley MNJ, Griffiths PD, Rigby A, Whitby EH. The value of in-utero magnetic resonance imaging in ultrasound diagnosed foetal isolated cerebral ventriculomegaly. Clin Radiol. 2007;62(2):140–4.

    Article  CAS  PubMed  Google Scholar 

  62. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45(3):169–84.

    Article  PubMed  Google Scholar 

  63. Boyer AC, GonÇalves LF, Lee W, Shetty A, Holman A, Yeo L, Romero R. Magnetic resonance diffusion-weighted imaging: reproducibility of regional apparent diffusion coefficients for the normal fetal brain. Ultrasound Obstet Gynecol. 2013;41(2):190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Righini A, Bianchini E, Parazzini C, Gementi P, Ramenghi L, Baldoli C, Nicolini U, Mosca F, Triulzi F. Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. Am J Neuroradiol. 2003;24(5):799.

    PubMed  Google Scholar 

  65. Schneider JF, Confort-Gouny S, Le Fur Y, Viout P, Bennathan M, Chapon F, Fogliarini C, Cozzone P, Girard N. Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol. 2007;17(9):2422–9.

    Article  CAS  PubMed  Google Scholar 

  66. Erdem G, Celik O, Hascalik S, Karakas HM, Alkan A, Firat AK. Diffusion-weighted imaging evaluation of subtle cerebral microstructural changes in intrauterine fetal hydrocephalus. Magn Reson Imaging. 2007;25(10):1417–22.

    Article  PubMed  Google Scholar 

  67. Story L, Damodaram MS, Allsop JM, McGuinness A, Wylezinska M, Kumar S, Rutherford MA. Proton magnetic resonance spectroscopy in the fetus. Eur J Obstet Gynecol Reprod Biol. 2011;158(1):3–8.

    Article  PubMed  Google Scholar 

  68. Azpurua H, Alvarado A, Mayobre F, Salom T, Copel JA, Guevara-Zuloaga F. Metabolic assessment of the brain using proton magnetic resonance spectroscopy in a growth-restricted human fetus: case report. Am J Perinatol. 2008;25(05):305–9.

    Article  PubMed  Google Scholar 

  69. Berger-Kulemann V, Brugger PC, Pugash D, Krssak M, Weber M, Wielandner A, Prayer D. MR spectroscopy of the fetal brain: is it possible without sedation? Am J Neuroradiol. 2013;34(2):424–31.

    Article  CAS  PubMed  Google Scholar 

  70. Brighina E, Bresolin N, Pardi G, Rango M. Human fetal brain chemistry as detected by proton magnetic resonance spectroscopy. Pediatr Neurol. 2009;40(5):327–42.

    Article  PubMed  Google Scholar 

  71. Evangelou IE, Du Plessis AJ, Vezina G, Noeske R, Limperopoulos C. Elucidating metabolic maturation in the healthy fetal brain using 1H-MR spectroscopy. Am J Neuroradiol. 2016;37(2):360–6.

    Article  CAS  PubMed  Google Scholar 

  72. Pugash D, Krssak M, Kulemann V, Prayer D. Magnetic resonance spectroscopy of the fetal brain. Prenat Diagn. 2009;29(4):434–41.

    Article  PubMed  Google Scholar 

  73. Kok RD, Steegers-Theunissen RP, Eskes TK, Heerschap A, van den Berg PP. Decreased relative brain tissue levels of inositol in fetal hydrocephalus. Am J Obstet Gynecol. 2003;188(4):978–80.

    Article  CAS  PubMed  Google Scholar 

  74. Shetty AN, Gabr RE, Rendon DA, Cassady CI, Mehollin-Ray AR, Lee W. Improving spectral quality in fetal brain magnetic resonance spectroscopy using constructive averaging. Prenat Diagn. 2015;35(13):1294–300.

    Article  PubMed  Google Scholar 

  75. Assaf Y, Ben-Sira L, Constantini S, Chang LC, Beni-Adani L. Diffusion tensor imaging in hydrocephalus: initial experience. Am J Neuroradiol. 2006;27(8):1717–24.

    CAS  PubMed  Google Scholar 

  76. Deshpande R, Chang L, Oishi K. Construction and application of human neonatal DTI atlases. Front Neuroanat. 2015;9:138.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shi F, Yap PT, Fan Y, Gilmore JH, Lin W, Shen D. Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation. Neuroimage. 2010;51(2):684–93.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yuan W, Meller A, Shimony JS, Nash T, Jones BV, Holland SK, Altaye M, Barnard H, Phillips J, Powell S, McKinstry RC. Left hemisphere structural connectivity abnormality in pediatric hydrocephalus patients following surgery. Neuroimage Clin. 2016;12:631–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bui T, Daire J, Chalard F, Zaccaria I, Alberti C, Elmaleh M, Garel C, Luton D, Blanc N, Sebag G. Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatr Radiol. 2006;36(11):1133–40.

    Article  PubMed  Google Scholar 

  80. Gupta RK, Hasan KM, Trivedi R, Pradhan M, Das V, Parikh NA, Narayana PA. Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res. 2005;81(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  81. Huang H, Xue R, Zhang J, Ren T, Richards LJ, Yarowsky P, Miller MI, Mori S. Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci. 2009;29(13):4263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hüppi PS, Dubois J. Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med. 2006;11(6):489–97.

    Article  PubMed  Google Scholar 

  83. Kasprian G, Brugger PC, Weber M, Krssák M, Krampl E, Herold C, Prayer D. In utero tractography of fetal white matter development. Neuroimage. 2008;43(2):213–24.

    Article  PubMed  Google Scholar 

  84. Gowland P, Fulford J. Initial experiences of performing fetal fMRI. Exp Neurol. 2004;190:22–7.

    Article  Google Scholar 

  85. Jardri R, Houfflin-Debarge V, Delion P, Pruvo JP, Thomas P, Pins D. Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Int J Dev Neurosci. 2012;30(2):159–61.

    Article  PubMed  Google Scholar 

  86. Garel C. New advances in fetal MR neuroimaging. Pediatr Radiol. 2006;36(7):621–5.

    Article  PubMed  Google Scholar 

  87. Schöpf V, Kasprian G, Brugger PC, Prayer D. Watching the fetal brain at ‘rest’. Int J Dev Neurosci. 2012;30(1):11–7.

    Article  PubMed  Google Scholar 

  88. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Sanal HT, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2014;84(1004):758–65.

    Article  Google Scholar 

  89. Chen G, Zheng J, Xiao Q, Liu Y. Application of phase-contrast cine magnetic resonance imaging in endoscopic aqueductoplasty. Exp Ther Med. 2013;5(6):1643–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Enzmann DR, Pelc N. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology. 1991;178(2):467–74.

    Article  CAS  PubMed  Google Scholar 

  91. Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1992;386:1–23.

    Google Scholar 

  92. Hentschel S, Mardal KA, Løvgren AE, Linge S, Haughton V. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. Am J Neuroradiol. 2010;31(6):997–1002.

    Article  CAS  PubMed  Google Scholar 

  93. Linninger AA, Xenos M, Zhu DC, Somayaji MR, Kondapalli S, Penn RD. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans Biomed Eng. 2007;54(2):291–302.

    Article  PubMed  Google Scholar 

  94. Matsumae M, Hirayama A, Atsumi H, Yatsushiro S, Kuroda K. Velocity and pressure gradients of cerebrospinal fluid assessed with magnetic resonance imaging: clinical article. J Neurosurg. 2014;120(1):218–27.

    Article  PubMed  Google Scholar 

  95. Sherman JL, Citrin CM. Magnetic resonance demonstration of normal CSF flow. Am J Neuroradiol. 1986;7(1):3–6.

    CAS  PubMed  Google Scholar 

  96. Stoquart-El Sankari S, Lehmann P, Gondry-Jouet C, Fichten A, Godefroy O, Meyer ME, Baledent O. Phase-contrast MR imaging support for the diagnosis of aqueductal stenosis. Am J Neuroradiol. 2009;30(1):209–14.

    Article  CAS  PubMed  Google Scholar 

  97. Sweetman B, Linninger AA. Cerebrospinal fluid flow dynamics in the central nervous system. Ann Biomed Eng. 2011;39(1):484–96.

    Article  PubMed  Google Scholar 

  98. Velardi F, Hoffman HJ, Ash JM, Hendrick EB, Humphreys RP. The value of CSF flow studies in infants with communicating hydrocephalus. Childs Nerv Syst. 1986;2(3):139–43.

    Article  CAS  PubMed  Google Scholar 

  99. Wentland AL, Wieben O, Korosec FR, Haughton VM. Accuracy and reproducibility of phase-contrast MR imaging measurements for CSF flow. Am J Neuroradiol. 2010;31(7):1331–6.

    Article  PubMed  Google Scholar 

  100. Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, Miyazaki M, Kelly EJ, McComb JG. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time–spatial labeling inversion pulse. Am J Neuroradiol. 2015;36(4):623–30.

    Article  CAS  PubMed  Google Scholar 

  101. Yamada S, Miyazaki M, Kanazawa H, Higashi M, Morohoshi Y, Bluml S, McComb JG. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology. 2008;249(2):644–52.

    Article  PubMed  Google Scholar 

  102. Öztürk M, Sığırcı A, Ünlü S. Evaluation of aqueductal cerebrospinal fluid flow dynamics with phase-contrast cine magnetic resonance imaging in normal pediatric cases. Clin Imaging. 2016;40(6):1286–90.

    Article  PubMed  Google Scholar 

  103. Quencer RM. Intracranial CSF flow in pediatric hydrocephalus: evaluation with cine-MR imaging. Am J Neuroradiol. 1992;13(2):601–8.

    CAS  PubMed  Google Scholar 

  104. Kousi M, Katsanis N. The genetic basis of hydrocephalus. Annu Rev Neurosci. 2016;39:409–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arwa Sulaiman Al Shamekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Al Shamekh, A.S., Al Qahtani, N., Ammar, A. (2017). Fetal Examination for Hydrocephalus. In: Ammar, A. (eds) Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-61304-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61304-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61303-1

  • Online ISBN: 978-3-319-61304-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics