Skip to main content

Retrieving of GNSS Tropospheric Delays from RTKLIB in Real-Time and Post-processing Mode

  • Conference paper
  • First Online:
Dynamics in GIscience (GIS OSTRAVA 2017)

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Included in the following conference series:

Abstract

Global Navigation Satellite Systems (GNSS) allow a precise estimation of atmospheric water vapour what is successfully used in weather forecasting, namely in Numerical Weather Prediction (NWP) models. In this study the quality of real-time and post-processed zenith total delay (ZTD) values from GPS (Global Positioning System) Precise Point Positioning (PPP) technique processing is investigated. GPS observations from a month-long period and eight European stations were processed in RTKLIB program package. Two versions of real-time processing solutions using different real-time IGS (International Global Navigation Satellite Systems Service) products (IGS01, IGS03) and two versions of post-processed solutions using different strategies were evaluated. Obtained ZTDs were compared with the final IGS ZTD product. The mean RMSE (root-mean-square error) was 10.3 mm for real-time solution based on the IGS03 real-time product and 12.2 mm for the other solution based on the IGS01 product. Both post-processed solutions reached a mean RMSE of about 5 mm. The better real-time ZTD solution from RTKLIB using IGS03 product was therefore close to the 10 mm value defined as a target ZTD accuracy necessary for their usage in NWP models and nowcasting applications in meteorology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, F., Václavovic, P., Teferle, F. N., Douša, J., Bingley, R., & Laurichesse, D. (2016). Comparative analysis of real-time precise point positioning zenith total delay estimates. GPS Solutions, 20, 187. doi:10.1007/s10291-014-0427-z

    Article  Google Scholar 

  • Bennitt, E., & Jupp, A. (2012). Operational assimilation of GPS zenith total delay observations into the met office numerical weather prediction models. Monthly Weather Review, 140(8), 2706–2719. doi:10.1175/MWR-D-11-00156.1

    Article  Google Scholar 

  • Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapour using the global positioning system. Journal Geophysical Research, 97, 15787–15801.

    Article  Google Scholar 

  • Böhm, J., Niell, A., Tregoning, P., & Schuh, H. (2006). Global MappingFunction (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33, L07304. doi:10.1029/2005GL025546

    Google Scholar 

  • Byram, S., Hackmann, C., & Tracey, J. (2011). Computation of a highprecision GPS-based troposphere product by the USNO. In Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, USA, September 19–23, 2011.

    Google Scholar 

  • Douša, J. (2010). Precise near real-time GNSS analyses at Geodetic Observatory Pecny—Precise orbit determination and water vapour monitoring. Acta Geodynamica et Geromaterialia, 7, 7–18.

    Google Scholar 

  • Douša, J., & Václavovic, P. (2014). Real-time zenith tropospheric delays in support of numerical weather prediction applications. Advances in Space Research, 53, 1347–1358. doi:10.1016/j.asr.2014.02.021

    Article  Google Scholar 

  • Douša, J., et al. (2016). Real-time demonstration and benchmark campaigns for developing advanced troposphere products. In IGS Workshop 2016, Sydney, Australia, February 8–12, 2016.

    Google Scholar 

  • Gelb, A. (Ed.). (1974). Applied optimal estimation. USA: The M. I. T Press.

    Google Scholar 

  • Guerova, G., Bettems, J. M., Brockmann, E., & Matzler, C. (2006). Assimilation of COST 716 near-real time GPS data in the nonhydrostatic limited area model used at MeteoSwiss. Meteorology and Atmospheric Physics, 91(1–4), 149–164. doi:10.1007/s00703-005-0110-6

    Article  Google Scholar 

  • Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., et al. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9, 5385–5406. doi:10.5194/amt-9-5385-2016

    Article  Google Scholar 

  • Li, M., Li,W., Shi, C., Zhao, Q., Su, X., Qu, L., et al. (2014). Assessment of Precipitable water vapor derived from ground-based beidou observations with precise point positioning approach. Advances in Space Research, doi:10.1016/j.asr.2014.10.010

  • Li, X., F. Zus, C. Lu, G. Dick, T. Ning, M. Ge, et al. (2015). Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model. Journal of Geophysical Research: Atmospheres, 120. doi:10.1002/2015JD023454

  • Lu, C., Li, X., Ge, M., Heinkelmann, R., Nilsson, T., Soja, B., et al. (2016). Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS. GPS Solutions, 20, 703–713. doi:10.1007/s10291-015-0479-8

    Article  Google Scholar 

  • MacMillan, D. S. (1995). Atmospheric gradients from very long baseline interferometry observations. Geophysical Reseach Letters, 22, 1041–1044. doi:10.1029/95GL00887

    Article  Google Scholar 

  • Mahfouf, J.-F., Ahmed, F., Moll, P., & Teferle, F. N. (2015). Assimilation of zenith total delays in the AROME France convective scale model: A recent assessment. Tellus A, 67, 26106. doi:10.3402/tellusa.v67.26106

    Article  Google Scholar 

  • Niell, A. E. (1996). Global mapping functions for the atmospheric delay at radio wavelengths. Journal of Geophysical Research, 101, 3227–3246.

    Article  Google Scholar 

  • Offiler, D. (2010). Product requirements document version 1.0–21 December 2010. EIG EUMETNET GNSS Water Vapour Programme (E-GVAP-II), Met Office.

    Google Scholar 

  • Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Geophysical Monograph Series, 15, 247–251. doi:10.1029/gm015p0247

    Google Scholar 

  • Shoji, Y., Kunii, M., & Saito, K. (2009). Assimilation of nationwide and global GPS PWV data for a heavy rain event on 28 July 2008 in Hokuriku and Kinki, Japan. Scientific Online Letters on the Atmosphere, 5, 45–48. doi:10.2151/sola.2009-012

    Google Scholar 

  • Takasu, T. (2009) RTKLIB: Open source program package for RTK-GPS. In FOSS4G 2009, Tokyo, Japan, November 2, 2009.

    Google Scholar 

  • Takasu, T. (2010). Real-time PPP with RTKLIB and IGS real-time satellite orbit and clock. In IGS Workshop 2010, Newcastle upon Tyne, England, June 28–July 2, 2010.

    Google Scholar 

  • Vedel, H., & Huang, X. (2004). Impact of ground based GPS data on numerical weather prediction. Journal of the Meteorological Society of Japan, 82(1B), 459–472. doi:10.2151/jmsj.2004.459

    Article  Google Scholar 

  • Yuan, Y., Zhang, K., Rohm, W., Choy, S., Norman, R., & Wang, C. S. (2014). Real-time retrieval of precipitable water vapor from GPS precise point positioning. Journal of Geophysical Research: Atmospheres, 119(16), 10044–10057.

    Google Scholar 

  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal Geophysical Research, 102(B3), 5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support from the Czech Ministry of Education, Youth and Sports (project no. LD14102). The study has been organized within the E.U. COST Action ES1206 (GNSS4SWEC) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kačmařík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kačmařík, M. (2018). Retrieving of GNSS Tropospheric Delays from RTKLIB in Real-Time and Post-processing Mode. In: Ivan, I., Horák, J., Inspektor, T. (eds) Dynamics in GIscience. GIS OSTRAVA 2017. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-61297-3_13

Download citation

Publish with us

Policies and ethics