Skip to main content

Biodegradable Polymers for Bone Tissue Engineering

  • Chapter
  • First Online:
Industrial Applications of Renewable Biomass Products

Abstract

Nowadays, tissue engineering is one of the research areas of fastest growing development, supported by the exponential growth in the number of publications in the most important scientific journals. The progress in this interdisciplinary area is precisely because of the cooperative labors of chemists, engineers, biologists, and others who have turned their efforts to the development of new polymeric materials with specific properties for the regeneration of tissues and especially those with applications in regeneration of bone tissue. The materials used in this application must meet a large number of requirements, among which may be noted adequate biodegradability according to the time required for regeneration of tissue, mechanical properties for the intended application, biocompatibility (adhesion, proliferation, and differentiation of osteoblasts), osteoinduction, and no cytotoxicity. This chapter presents the main developments in the area of biodegradable biomaterials, their features, and more relevant properties, currently developed for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allo BA, Costa DO, Dixon SJ, Mequanint K, Rizkalla AS (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3:432–463

    Article  CAS  Google Scholar 

  • Anseth KS, Shastri VR, Langer R (1999) Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat Biotechnol 17:156–159

    Article  CAS  Google Scholar 

  • Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M (2017) Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med 11:164–174

    Article  CAS  Google Scholar 

  • Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107:556–561

    Article  CAS  Google Scholar 

  • Aravamudhan A1, Ramos DM, Nip J, Harmon MD, James R, Deng M, Laurencin CT, Yu X, Kumbar SG (2013) Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol 9:719–731

    Article  CAS  Google Scholar 

  • Attawia MA, Uhrich KE, Botchwey E, Fan M, Langer R, Laurencin CT (1995) Cytotoxocity testing of poly(anhydride) for orthopaedic applications. J Biomed Mater Res 29:1233–1240

    Article  CAS  Google Scholar 

  • Azami M, Samadikuchaksaraei A, Poursamar SA (2010) Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs 33:86–95

    CAS  Google Scholar 

  • Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32:8161–8171

    Article  CAS  Google Scholar 

  • Bae MS, Ohe JY, Lee JB, Heo DN, Byun W, Bae H, Kwon YD, Kwon IK (2014) Photocured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59:189–198

    Article  CAS  Google Scholar 

  • Belluzo MS, Medina LF, Cortizo AM, Cortizo MS (2016) Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications. Ultrason Sonochem 30:1–8

    Article  CAS  Google Scholar 

  • Bendtsen ST, Wei M (2015) Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B 3:3081–3090

    Article  CAS  Google Scholar 

  • Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M (2014) Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold. Biomed Res Int 2014:146723

    Article  CAS  Google Scholar 

  • Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB (2015) Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Res Ther 6:84

    Article  CAS  Google Scholar 

  • Chan WP, Kung FC, Kuo YL, Yang MC, Lai WF (2015) Alginate/Poly(γ-glutamic Acid) base biocompatible gel for bone tissue engineering. Biomed Res Int 2015:185841

    Google Scholar 

  • Chatzinikolaidou M, Rekstyte S, Danilevicius P, Pontikoglou C, Papadaki H, Farsari M, Vamvakaki M (2015) Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair. Mater Sci Eng C Mater Biol Appl 48:301–309

    Article  CAS  Google Scholar 

  • Chen S, Nakamoto T, Kawazoe N, Chen G (2015) Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials 73:23–31

    Article  CAS  Google Scholar 

  • Chu CC (1989) In: Williams DF (ed) Biocompatibility of degradable polymers. CRC Press, Boca Raton

    Google Scholar 

  • Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr Polym 92:1262–1279

    Article  CAS  Google Scholar 

  • Cortizo MS, Molinuevo MS, Cortizo AM (2008) Biocompatibility and biodegradation of polyesterand polyfumarate based-scaffolds for bone tissue engineering. J Tissue Eng Regen Med 2:33–42

    Article  CAS  Google Scholar 

  • Cortizo AM, Ruderman G, Correa G, Mogilner IG, Tolosa EJ (2012) Effect of surface topography of collagen scaffolds on cytotoxicity and osteoblast differentiation. J Biomater Tissue Eng 2:125–132

    Article  CAS  Google Scholar 

  • Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347

    Article  CAS  Google Scholar 

  • Coury AJ, Levy RJ, Ratner BD, Shoen FJ, Williams DF, Williams RL (2004) Degradation of materials in the biological environment, chapter 6. In: Ratner, Hoffman, Shoen, Lemons (eds) Biomaterials science. Elsevier Ac. Press, San Diego, pp 411–453

    Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  Google Scholar 

  • Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22:661–666

    Article  CAS  Google Scholar 

  • Dias JM, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MG, Ramos AM, Oliveira R, Reis MA (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906

    Article  CAS  Google Scholar 

  • Dickinson HR, Hiltner A, Gibbons DF, Anderson JM (1981) Biodegradation of a poly(α-amino acid) hydrogel. I. In vivo. J Biomed Mater Res 15:577–589

    Article  CAS  Google Scholar 

  • Doi Y, Kanesawa Y, Kawaguchi Y, Kunioka M (1989) Hydrolytic degradation of microbial poly(hydroxyalkanoates). Makromol Chem Rapid Commun 10:227–230

    Article  CAS  Google Scholar 

  • Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8:42

    Article  CAS  Google Scholar 

  • Fernández JM, Molinuevo MS, Cortizo AM, McCarthy AD, Cortizo MS (2010) Characterization of poly(ε-caprolactone)/Polyfumarate blends as scaffolds for bone tissue engineering. J Biomat Scie Polym Ed 21:1297–1312

    Article  CAS  Google Scholar 

  • Fernández JM, Molinuevo MS, Cortizo MS, Cortizo AM (2011) Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering. J Tissue Eng Regen Med 5:e126–e135

    Article  CAS  Google Scholar 

  • Fernández JM, Cortizo MS, Cortizo AM (2014) Fumarate/ceramic composite based scaffolds for tissue engineering: evaluation of hydrophylicity, degradability, toxicity and biocompatibility. JBiomatTissue Eng 4:1–8

    Google Scholar 

  • Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200

    Article  CAS  Google Scholar 

  • Fischer RL, McCoy MG, Grant SA (2012) Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater Med 23:1645–1654

    Article  CAS  Google Scholar 

  • Freddi G, Romanò M, Massafra MR, Tsukada M (1995) Silk fibroin/cellulose blend films: preparation, structure, and physical properties. J Appl Polym Sci 56:1537–1545

    Article  CAS  Google Scholar 

  • Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2:1908–1922

    Article  CAS  Google Scholar 

  • Freier T (2006) Biopolyesters in tissue engineering applications. Adv Polym Sci 203:1–61

    Article  CAS  Google Scholar 

  • Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2:872–883

    Article  CAS  Google Scholar 

  • Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) You have full text access to this content tissue response and in vivo degradation of selected polyhydroxyacids: Polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 27:1135–1148

    Article  CAS  Google Scholar 

  • Gomez de Oliveira Barud H, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB Jr, Ribeiro SJ (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420

    Article  CAS  Google Scholar 

  • Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827

    Article  CAS  Google Scholar 

  • Goonoo N, Bhaw-Luximon A, Passanha P, Esteves SR, Jhurry D (2016) Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33674

  • Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  CAS  Google Scholar 

  • Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, Chapter 2. In: Pignatello R (ed) Biomaterials applications for nanomedicine. InTech, Rijeka, pp 17–52

    Google Scholar 

  • Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. European Cells and Materials 5:1–16

    Article  CAS  Google Scholar 

  • Gunatillake PA, Adhikari R (2011) Biodegradable polyurethanes: design, synthesis, properties and potential applications, Chapter 9. In: Felto GP (ed) Biodegradable polymers: processing, degradation and applications. Nova Science Publishers, Hauppauge, pp 431–470

    Google Scholar 

  • Guo B, Lei B, Li P, Ma PX (2015) Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2015:47–57

    Article  Google Scholar 

  • Hafeman AE, Zienkiewicz KJ, Zachman AL, Sung HJ, Nanney LB, Davidson JM, Guelcher SA (2011) Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds. Biomaterials 32:419–429

    Article  CAS  Google Scholar 

  • Hardy JG, Torres-Rendon JG, Leal-Egaña A, Walther A, Schlaad H, Cölfen H, Scheibel TR (2016) Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering. Materials 9:560

    Article  Google Scholar 

  • Hayati AN, Rezaie HR, Hosseinalipour SM (2011) Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett 65:736–739

    Article  CAS  Google Scholar 

  • He J, Wang Y, Cui S, Gao Y, Wang S (2010) Structure and properties of silk fibroin/carboxymethyl chitosan blend films. Polym Bull 65:395–409

    Article  CAS  Google Scholar 

  • He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627

    Article  CAS  Google Scholar 

  • He J-X, Tan W-L, Han Q-M, Cui S-Z, Shao W, Sang F (2016) Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci 51:4399–4410

    Article  CAS  Google Scholar 

  • Hesaraki S, Nezafati N (2014) In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements. Bioprocess Biosyst Eng 37:1507–1516

    Article  CAS  Google Scholar 

  • Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR (2004) Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5:1990–1998

    Article  CAS  Google Scholar 

  • Huang Y, Zhang X, Wua A, Xu H (2016) An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv 6:33529–33536

    Article  CAS  Google Scholar 

  • Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks-biopolymers with potential for future applications. Polymers 3:640–661

    Article  CAS  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  Google Scholar 

  • Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regen Med 6:135–143

    Article  CAS  Google Scholar 

  • Jiang M, Liu Q, Zhang Q, Ye C, Zhou G (2012) You have full text access to this content A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J Polym Sci Part A: Polym Chem 50:1026–1036

    Article  CAS  Google Scholar 

  • Kang Z, Zhang X, Chen Y, Akram MY, Nie J, Zhu X (2017) Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Mater Sci Eng C 70:1125–1131

    Article  CAS  Google Scholar 

  • Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32

    Article  CAS  Google Scholar 

  • Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 54:20–25

    Article  CAS  Google Scholar 

  • Koh L-D, Cheng Y, Teng Y-P, Khin Y-W, Loh X-J, Tee S-Y, Low M, Ye E, Yu H-D, Zhang Y-W, Han M-Y (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110

    Article  CAS  Google Scholar 

  • Ku Y, Shim IK, Lee JY, Park YJ, Rhee S-H, Nam SH, Park JB, Chung CP, Lee SJ (2009) Chitosan/poly(l-lactic acid) multilayered membrane for guided tissue regeneration. J Biomed Mater Res A 90:766–772

    Article  CAS  Google Scholar 

  • Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, Qin YX, Mikos AG, Sitharaman B (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 14:900–909

    Article  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  • Lastra ML, Molinuevo MS, Cortizo AM, Cortizo MS (2016) Fumarate copolymer–chitosan cross-linked scaffold directed to osteochondrogenic tissue engineering. Macromol Biosci. doi:10.1002/mabi.201600219

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  • Lee JM, Kim JH, Lee OJ, Park CH (2013) The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg 139:629–635

    Article  Google Scholar 

  • Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P (1984) Degradation of poly(isobutylcyanoacrylate) nanoparticles. Biomaterials 5:65–68

    Article  CAS  Google Scholar 

  • Leonard F, Kulkarni RK, Brandes G, Nelson J, Cameron JJ (1966) Synthesis and degradation of poly(alkylα-cyanoacrylates). J Polym Sci 10:259–272

    CAS  Google Scholar 

  • Leong KW, Brott BC, Langer RJ (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. Biomed Mater Res 19:941–955

    Article  CAS  Google Scholar 

  • Levengood SL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B Mater Biol Med 2:3161–3184

    Article  CAS  Google Scholar 

  • Liuyun J, Yubao L, Chengdong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 16:65

    Article  CAS  Google Scholar 

  • Logith Kumar R, Keshav Narayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188

    Article  CAS  Google Scholar 

  • Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198

    Article  CAS  Google Scholar 

  • Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Article  CAS  Google Scholar 

  • Martin C, Winet H, Bao JY (1996) Acidity near eroding polylactidepolyglycolidein vitro and in vivo in rabbit tibial bone chambers. Biomaterials 17:2373–2380

    Article  CAS  Google Scholar 

  • Maté Sánchez de Val JE, Calvo Guirado JL, Ramírez Fernández MP, Delgado Ruiz RA, Mazón P, De Aza PN (2015) In vivo behavior of hydroxyapatite/β-TCP/collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days. Clin Oral Implants Res 102:1037–1046

    Google Scholar 

  • Meghezi S, Seifu DG, Bono N, Unsworth L, Mequanint K, Mantovani D (2015) Engineering 3D cellularized collagen gels for vascular. Tissue regeneration. J Vis Exp 100:1–12

    Google Scholar 

  • Melke J, Midha S, Ghosh S, Ito K, Hofmann S (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16

    Article  CAS  Google Scholar 

  • Mienaltowski MJ, Birk D (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29

    Article  CAS  Google Scholar 

  • Mkhabela VJ, Ray SS (2014) Poly(ε-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview. J Nanosci Nanotechnol 14:535–545

    Article  CAS  Google Scholar 

  • Mohammadi Y, Soleimani M, Fallahi-sichani M, Gazme A, Haddadiasl V, Arefian E, Kiani J, Moradi R, Atashi A, Ahmadbeigi N (2007) Nanofibrous poly(ε-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif 30:204–211

    CAS  Google Scholar 

  • Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VKC, Wootton DM, Lelkes PI, Zhou J (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408

    Article  CAS  Google Scholar 

  • Murthy N, Wilson S, Sy JC (2012) Biodegradation of polymers. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Amsterdam, Elsevier, pp 547–560

    Chapter  Google Scholar 

  • Ngiam M, Liao S, Patil AJ, Cheng Z, Yang F, Gubler MJ, Ramakrishna S, Chan CK (2009) Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Tissue Eng Part A 15:535–546

    Article  CAS  Google Scholar 

  • Nguyen TB, Lee BT (2014) A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue Eng Part A 20:1993–2004

    Article  CAS  Google Scholar 

  • Niranjan R, Koushik C, Saravanan S, Moorthi A, Vairamani M, Selvamurugan N (2013) A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 54:24–29

    Article  CAS  Google Scholar 

  • Novotna K, Havelka P, Sopuch T, Kolarova K, Vosmanska V, Lisa V, Svorcik V, Bacakova L (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose 20:2263–2278

    Article  CAS  Google Scholar 

  • O’Brien F (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95

    Article  CAS  Google Scholar 

  • Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A (2016) Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med 27:155

    Article  CAS  Google Scholar 

  • Park ES, Maniar M, Shah J (1996) Effects of model compounds with varying physicochemical properties on erosion of polyanhydride devices. J Control Release 40:111–121

    Article  CAS  Google Scholar 

  • Park H, Choi B, Nguyen J, Fan J, Shafi S, Klokkevold P, Lee M (2013) Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr Polym 97:587–596

    Article  CAS  Google Scholar 

  • Peter SJ, Nolley JA, Widmer MS, Merwin JE, Yazemski MJ, Yasko AW, Engel PS, Mikos AG (1997) In vitro degradation of a poly(propylene fumarate)/ßtricalciumphosphate composition orthopaedic scaffold. Tissue Eng 3:207–215

    Article  CAS  Google Scholar 

  • Pigossi SC, de Oliveira GJ, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr, Ribeiro SJ, Saska S, Scarel-Caminaga RM (2015) Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res A 103:3397–3406

    Article  CAS  Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169

    Article  CAS  Google Scholar 

  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56

    Article  CAS  Google Scholar 

  • Qiu H, Yang J, Kodali P, Koh J, Ameer GA (2006) Citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27:5845–5854

    Article  CAS  Google Scholar 

  • Raghavendran HRB, Puvaneswary S, Talebian S, Murali MR, Naveen SV, Krishnamurithy G, McKean R, Kamarul T (2014) A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS One 9:e104389

    Article  CAS  Google Scholar 

  • Rașoga O, Sima L, Chirițoiu M, Popescu-Pelin G, Fufă O, Grumezescu V, Socol M, Stănculescu A, Zgură I, Socol G (2017) Biocomposite coatings based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium phosphates obtained by MAPLE for bone tissue engineering. Appl Surf Sci 417:204–212. doi:10.1016/j.apsusc.2017.01.205

    Article  CAS  Google Scholar 

  • Rau JV, Antoniac I, Cama G, Komlev VS, Ravaglioli A (2016) Bioactive materials for bone tissue engineering. Biomed Res Int 2016:3741428; 1–3

    Article  CAS  Google Scholar 

  • Razak SIA, Sharif NFA, Rahman WAWA (2012) Biodegradable polymers and their bone applications: a review. Int J Basic Appl Sci 12:31–49

    Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  • Rhodes NP, Hunt JA, Longinotti C, Pavesio A (2011) In vivo characterization of Hyalonect, a novel biodegradable surgical mesh. J Surg Res 168:31–38

    Article  CAS  Google Scholar 

  • Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Review. Macromol Biosci 4:743–765

    Article  CAS  Google Scholar 

  • Samadikuchaksaraei A, Gholipourmalekabadi M, Erfani Ezadyar E, Azami M, Mozafari M, Johari B, Kargozar S, Jameie SB, Korourian A, Seifalian AM (2016) Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J Biomed Mater Res A 104:2001–2010

    Article  CAS  Google Scholar 

  • Sangkert S, Meesane J, Kamonmattayakul S, Chai WL (2016) Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: morphological structures and biofunctionalities. Mater Sci Eng C 58:1138–1149

    Article  CAS  Google Scholar 

  • Santos CA, Freedman BD, Leach KJ, Press DL, Scarpulla M, Mathiowitz E (1999) Poly(fumaric–co-sebacic anhydride): a degradation study as evaluated by FTIR, DSC, GPC and X-ray diffraction. J Control Release 60:11–22

    Article  CAS  Google Scholar 

  • Saravanan S, Sameera DK, Moorthi A, Selvamurugan N (2013) Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol 62:481–486

    Article  CAS  Google Scholar 

  • Sarikaya B, Aydin HM (2015) Collagen/beta-tricalcium phosphate based synthetic bone grafts via dehydrothermal processing. Biomed Res Int 2015:576532

    Article  CAS  Google Scholar 

  • Sarkar SK, Lee BT (2015) Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 30:279–293

    Article  Google Scholar 

  • Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362

    Article  CAS  Google Scholar 

  • Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem 54:2816–2820

    Article  CAS  Google Scholar 

  • Schante CE, Zuber G, Herlin C, Vandamme TF (2012) Improvement of hyaluronic acid enzymatic stability by the grafting of amino-acids. Carbohydr Polym 87:2211–2216

    Article  CAS  Google Scholar 

  • Schubert MA, Wiggins MJ, Anderson JM, Hiltner A (1997) Role of oxygen in biodegradation of poly(etherurethaneurea) elastomers. J Biomed Mater Res 34:519–530

    Article  CAS  Google Scholar 

  • Smith R, Oliver C, Williams DF (1987) The enzymatic degradation of polymers in vitro. J Biomed Mater Res 21:991–1003

    Article  CAS  Google Scholar 

  • Sun J, Tan H (2013) Review alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  Google Scholar 

  • Sun Y, Shao Z, Ma M, Hu P, Liu Y, Yu T (1997) Acrylic polymer-silk fibroin blend fibers. J Appl Polym Sci 65(5):959–966

    Article  CAS  Google Scholar 

  • Sun K, Li H, Li R, Nian Z, Li D, Xu C (2015) Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Eur J Orthop Surg Traumatol 25:243–249

    Article  Google Scholar 

  • Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61

    Article  CAS  Google Scholar 

  • Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull JJ, Fraser MJ (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci 109:923–928

    Article  Google Scholar 

  • Thurber AE, Omenetto FG, Kaplan DL (2015) In vivo bioresponses to silk proteins. Biomaterials 71:155–157

    Article  CAS  Google Scholar 

  • Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  • Uhrich KE, Gupta A, Thomas TT, Laurencin C, Langer R (1995) Synthesis and characterization of degradablepolyanhydrides. Macromolecules 28:2148–2193

    Article  Google Scholar 

  • Uhrich KE, Thomas TT, Laurencin CT, Langer R (1997) In vitro degradation characteristics of poly(anhydride-imide) containing trimellitylimidoglycine. J Appl Polym Sci 63:1401–1411

    Article  CAS  Google Scholar 

  • Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1314

    Article  CAS  Google Scholar 

  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55:519–548

    Article  CAS  Google Scholar 

  • Venkatesan J, Pallela R, Kim S-K (2014) Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol 10:3105–3123

    Article  CAS  Google Scholar 

  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  CAS  Google Scholar 

  • Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 28:43–56

    Article  Google Scholar 

  • Williams DF (1989) Polymer degradation in biological environments, Chapter 5. In: Allen G, Aggarwal SL, Russo S (eds) Comprehensive polymer science, vol 6. Pergamon Press, Oxford, UK

    Google Scholar 

  • Winet H, Bao JY (1997) Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers. J Biomater Sci Polym Edn 8:517–532

    Article  CAS  Google Scholar 

  • Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y (2014) Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int 2014:302932

    Article  CAS  Google Scholar 

  • Yan L-P, Salgado AJ, Oliveira JM, Oliveira AL, Reis RL (2013) De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. J Bioact Compat Polym 28:439–452

    Article  CAS  Google Scholar 

  • Yao D, Liu H, Fan Y (2016) Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med 241:238–245

    Article  CAS  Google Scholar 

  • Yu H-S, Won J-E, Jin G-Z, Kim H-W (2012) Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. Biores Open Access 1:124–136

    Article  CAS  Google Scholar 

  • Yu Z, An B, Ramshaw JA, Brodsky B (2014) Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 186:451–461

    Article  CAS  Google Scholar 

  • Zaikov GE (1985) Quantitative aspects of polymer degradation in the living body. J Macromol Sci, Part C 25:551–597

    Article  Google Scholar 

  • Zhang N, Zeng C, Wang L, Ren J (2013) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxy-functional styrene acrylic copolymer as reactive agent. J Polym Environ 21:286–292

    Article  CAS  Google Scholar 

  • Zhang J, Ma X, Fan D, Zhu C, Deng J, Hui J, Ma P (2014) Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. Mater Sci Eng C Mater Biol Appl 43:547–554

    Article  CAS  Google Scholar 

  • Zhang X, Battiston KG, McBane JE, Matheson LA, Labow RS, Santerre JP (2016) Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments, Chapter 3. In: Cooper SL, Guan J (eds) Advances in polyurethane biomaterials. Woodhead Publishing, Duxford, pp 75–114

    Chapter  Google Scholar 

  • Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int J Biol Macromol 82:1028–1040

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Susana Cortizo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cortizo, M.S., Belluzo, M.S. (2017). Biodegradable Polymers for Bone Tissue Engineering. In: Goyanes, S., D’Accorso, N. (eds) Industrial Applications of Renewable Biomass Products. Springer, Cham. https://doi.org/10.1007/978-3-319-61288-1_2

Download citation

Publish with us

Policies and ethics