Skip to main content

Synthesis and Applications of Carbohydrate-Based Polyurethanes

  • Chapter
  • First Online:
Industrial Applications of Renewable Biomass Products

Abstract

Polyurethanes are one of the most important and widespread type of polymers which display a wide range of industrial and biomedical applications. The recent approaches and advances in polyurethane research involve the replacement of petro-based polyols and isocyanates with biobased molecules. In this regard, carbohydrates offer a great promise due to their rich functionality, varied stereochemistry, and renewable production on an impressive scale. The carbohydrate-based polyurethanes are also prone to being biodegradable and biocompatible. These types of materials may be entirely derived from carbohydrates or contain carbohydrates as pendant groups or as constituents of the soft part of the polymer. Artificial polymers prepared by combination of polysaccharides with synthetic monomers or polymers are also included. The synthesis of these materials is described, and their actual or potential applications (mostly in biomedicine, as implants for tissue repair, as permanent or temporary prosthesis, or as drug delivery systems) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenhaïm D, Loupy A, Munnier L, Tamion R, Marsais F, Quéguiner G (1994) Selective alkylations of 1,4:3,6-dianhydro-D-glucitol (isosorbide). Carbohydr Res 261:255–266

    Article  Google Scholar 

  • Abraham GA, Marcos-Fernández A, Román JS (2006) Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character. J Biomed Mater Res 76A:729–736

    Article  CAS  Google Scholar 

  • Alves P, Ferreira P, Gil MH (2012) Biomedical polyurethanes-based materials. In: Cavaco LI, Almeida Melo J (eds) Polyurethane: properties, structure and applications, Polymer science and technology. Nova Science Publishers, New York, pp 25–50

    Google Scholar 

  • Arce SM, Kolender AA, Varela O (2010) Synthesis of ω-amino-α-phenylcarbonate alkanes and their polymerization to [n]-polyurethanes. Polym Int 59:1212–1220

    Article  CAS  Google Scholar 

  • Bachmann F, Reimer J, Ruppenstein M, Thiem J (1998) Synthesis of a novel starch-derived AB-type polyurethane. Macromol Rapid Commun 19:21–26

    Article  CAS  Google Scholar 

  • Bachmann F, Reimer J, Ruppenstein M, Thiem J (2001) Synthesis of novel polyurethanes and polyureas by polyaddition reactions of dianhydrohexitol configurated diisocyanates. Macromol Chem Phys 202:3410–3419

    Article  CAS  Google Scholar 

  • Barikani M, Mohammadi M (2007) Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 68:773–780

    Article  CAS  Google Scholar 

  • Barikani M, Honarkar H, Barikani M (2009) Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε-caprolactone). J Appl Polym Sci 112:3157–3165

    Article  CAS  Google Scholar 

  • Barikani M, Honarkar H, Barikani M (2010) Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatsh Chem 141:653–659

    Article  CAS  Google Scholar 

  • Bayer CL, Pérez Herrero E, Peppas NA (2011) Alginate films as macromolecular imprinted matrices. J Biomater Sci Polym Ed 22:1523–1534

    Article  CAS  Google Scholar 

  • Begines B, Zamora F, Roffé I, Mancera M, Galbis JA (2011) Sugar-based hydrophilic polyurethanes and polyureas. J Polym Sci Part A: Polym Chem 49:1953–1961

    Article  CAS  Google Scholar 

  • Begines B, Zamora F, Benito E, García-Martín MDG, Galbis JA (2012) Conformationally restricted linear polyurethanes from acetalized sugar-based monomers. J Polym Sci Part A: Polym Chem 50:4638–4646

    Article  CAS  Google Scholar 

  • Beldi M, Medimagh R, Chatti S, Marque S, Prim D, Loupy A, Delolme F (2007) Characterization of cyclic and non-cyclic poly-(ether-urethane)s bio-based sugar diols by a combination of MALDI-TOF and NMR. Eur Polym J 43:3415–3433

    Article  CAS  Google Scholar 

  • Besse V, Auvergne R, Carlotti S, Boutevin G, Otazaghine B, Caillol S, Pascault JP, Boutevin B (2013) Synthesis of isosorbide based polyurethanes: an isocyanate free method. React Funct Polym 73:588–594

    Article  CAS  Google Scholar 

  • Campiñez MD, Aguilar-de-Leyva A, Ferris C, de Paz MV, Galbis JA, Caraballo I (2013) Study of the properties of the new biodegradable polyurethane PU (TEG-HMDI) as matrix forming excipient for controlled drug delivery. Drug Dev Ind Pharm 39:1758–1764

    Article  CAS  Google Scholar 

  • Cascone MG (1997) Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int 43:55–69

    Article  CAS  Google Scholar 

  • Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed 12:267–281

    Article  CAS  Google Scholar 

  • Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE (2013) Polyurethane-based drug delivery systems. Int J Pharm 450:145–162

    Article  CAS  Google Scholar 

  • Cognet-Georjon E, Mechin F, Pascault JP (1995) New polyurethanes based on diphenylmethane diisocyanate and 1,4:3,6-dianhydrosorbitol, 1. Model kinetic studies and characterization of the hard segment. Makromol Chem 196:3733–3751

    Article  CAS  Google Scholar 

  • Daemi H, Barikani M, Barmar M (2013) Highly stretchable nanoalginate based polyurethane elastomers. Carbohydr Polym 95:630–636

    Article  CAS  Google Scholar 

  • Datta J, Włoch M (2016) Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure-properties relationship and from an environmental point of view. Polym Bull 73:1459–1496

    Article  CAS  Google Scholar 

  • Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118

    Article  CAS  Google Scholar 

  • Dieterich D (1981) Aqueous emulsions, dispersions and solutions of polyurethanes: synthesis and properties. Prog Org Coat 9:281–340

    Article  CAS  Google Scholar 

  • Dirlikov SK, Schneider CJ (1984) Polyurethanes based on 1;4-3:6 dianhydrohexitols. US Patent 4,443,563

    Google Scholar 

  • Donnelly MJ, Still RH, Stanford JL (1991) The conversion of polysaccharides into polyurethanes: a review. Carbohydr Polym 14:221–240

    Article  Google Scholar 

  • Donnelly MJ, Stanford JL, Still RH (1993) Polyurethanes from renewable resources –I: properties of polymers derived from glucose and xylose based polyols. Polym Int 32:197–203

    Article  CAS  Google Scholar 

  • Draget KI (2009) Alginates. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing Limited, Elsevier, Cambridge, pp 807–828

    Chapter  Google Scholar 

  • Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Tessmar J, Göpferich A (2004) Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm 58:385–407

    Article  CAS  Google Scholar 

  • Efe-Sanden G, Toomey R (2014) Poly(N-isopropylacrylamide) networks conjugated with Gly–Gly–his via a Merrifield solid-phase peptide synthesis technique for metal-ion recognition. Macromol Chem Phys 215:1342–1349

    Article  CAS  Google Scholar 

  • Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault J-P (2010) Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog Polym Sci 35:578–622

    Article  CAS  Google Scholar 

  • Fernández CE, Bermúdez M, Versteegen RM, Meijer EW, Vancso GJ, Muñoz-Guerra S (2010) An overview on 12-polyurethane: synthesis, structure and crystallization. Eur Polym J 46:2089–2098

    Article  CAS  Google Scholar 

  • Ferris C, De Paz MV, Zamora F, Galbis JA (2010) Dithiothreitol-based polyurethanes. Synthesis and degradation studies. Polym Degrad Stab 95:1480–1487

    Article  CAS  Google Scholar 

  • Ferris C, De Paz MV, Galbis JA (2011) L-arabinitol-based functional polyurethanes. J Polym Sci Part A: Polym Chem 49:1147–1154

    Article  CAS  Google Scholar 

  • Ferris C, de Paz MV, Galbis JA (2012) Synthesis of functional sugar-based polyurethanes. Macromol Chem Phys 213:480–488

    Article  CAS  Google Scholar 

  • Ferris C, de Paz MV, Aguilar-de-Leyva A, Caraballo I, Galbis JA (2014) Reduction-sensitive functionalized copolyurethanes for biomedical applications. Polym Chem 5:2370–2381

    Article  CAS  Google Scholar 

  • Fidalgo DM, Kolender AA, Varela O (2013) Stereoregular poly-O-methyl [m, n]-polyurethanes derived from D-mannitol. J Polym Sci Part A: Polym Chem 51:463–470

    Article  CAS  Google Scholar 

  • Flavin K, Resmini M (2009) Imprinted nanomaterials: a new class of synthetic receptors. Anal Bioanal Chem 393:437–444

    Article  CAS  Google Scholar 

  • Fu G-Q, Yu H, Zhu J (2008) Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. Biomaterials 29:2138–2142

    Article  CAS  Google Scholar 

  • Furukawa M, Mitsui Y, Fukumaru T, Kojio K (2005) Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer 46:10817–10822

    Article  CAS  Google Scholar 

  • Galbis JA, García-Martín MG, de Paz MV, Galbis E (2016) Synthetic polymers from sugar-based monomers. Chem Rev 116:1600–1636

    Article  CAS  Google Scholar 

  • Gallagher JJ, Hillmyer MA, Reineke TM (2014) Degradable thermosets from sugar-derived dilactones. Macromolecules 47:498–505

    Article  CAS  Google Scholar 

  • Gallego R, Arteaga JF, Valencia C, Franco JM (2015) Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chem Eng Sci 134:260–268

    Article  CAS  Google Scholar 

  • Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669

    Article  CAS  Google Scholar 

  • Garçon R, Clerk C, Gesson JP, Bordado J, Nunes T, Caroço S, Gomes PT, Minas da Piedade ME, Rauter AP (2001) Synthesis of novel polyurethanes from sugars and 1,6-hexamethylene diisocyanate. Carbohydr Polym 45:123–127

    Article  Google Scholar 

  • Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26:218–224

    Article  CAS  Google Scholar 

  • Giusti P, Lazzeri L, Petris S, Palla M, Cascone MG (1994) Collagen-based new bioartificial polymeric materials. Biomaterials 15:1229–1233

    Article  CAS  Google Scholar 

  • Gomez RV, Varela O (2009) Synthesis of polyhydroxy [n]-polyurethanes derived from a carbohydrate precursor. Macromolecules 42:8112–8117

    Article  CAS  Google Scholar 

  • Hashimoto K, Okada M, Honjoh N (1990) Ring-opening polyaddition of D-glucaro-1,4:6,3-dilactone with p-xylylenediamine. Makromol Chem Rapid Commun 11:393–396

    Article  CAS  Google Scholar 

  • Hashimoto K, Mori K, Okada M (1992) Anionic ring-opening polymerization of a novel optically active bicyclic lactam synthesized from an acidic saccharide. Macromolecules 25:2592–2598

    Article  CAS  Google Scholar 

  • Hashimoto K, Wibullucksanakul S, Matsuera M, Okada M (1993a) Macromolecular synthesis from saccharic lactones. Ring-opening polyaddition of D-glucaro- and D-mannaro-1,4:6,3-dilactones with alkylenediamines. Polym Sci Part A: Polym Chem 31:3141–3149

    Article  CAS  Google Scholar 

  • Hashimoto K, Wibullucksanakul S, Okada M (1993b) Polyaddition of saccharic dilactones with hexamethylene diisocyanate. Chem Rapid Commun 14:591–595

    Article  CAS  Google Scholar 

  • Hashimoto K, Hashimoto N, Kamaya T, Yoshioka J, Okawa H (2011) Synthesis and properties of bio-based polyurethanes bearing hydroxy groups derived from alditols. J Polym Sci Part A: Polym Chem 49:976–985

    Article  CAS  Google Scholar 

  • Haug A, Larsen B, Smidsrod O (1966) A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190

    Article  CAS  Google Scholar 

  • van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57

    Article  CAS  Google Scholar 

  • Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7:66–72

    Article  CAS  Google Scholar 

  • Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105

    Article  CAS  Google Scholar 

  • Kihara N, Endo T (1993) Synthesis and properties of poly(hydroxyurethane)s. J Polym Sci Part A: Polym Chem 31:2765–2773

    Article  CAS  Google Scholar 

  • Kihara N, Cusida Y, Endo T (1996) Optically active poly(hydroxyurethane)s derived from cyclic carbonate and L-lysine derivatives. J Polym Sci Part A: Polym Chem 34:2173–2179

    Article  CAS  Google Scholar 

  • Kim H-J, Kang M-S, Knowles JC, Gong M-S (2014) Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties. J Biomater Appl 29:454–464

    Article  CAS  Google Scholar 

  • Kloosterboer JG (1988) Network formation by chain crosslinking photopolymerization and its applications in electronics. Adv Polym Sci 84:1–61

    Article  CAS  Google Scholar 

  • Kolender AA, Arce SM, Varela O (2011) Synthesis and characterization of poly-O-methyl-[n]-polyurethane from a D-glucamine-based monomer. Carbohydr Res 346:1398–1405

    Article  CAS  Google Scholar 

  • Kricheldorf HR (1997) Sugar diols as building blocks of polycondensates. J Macromol Sci Rev Macromol Chem Phys 37:599–631

    Article  Google Scholar 

  • Król P (2009) Polyurethanes – a review of 60 years of their syntheses and applications. Polimery 54:489–500

    Google Scholar 

  • Langer R, Cima LG, Tamada JA, Wintermantel E (1990) Future directions in biomaterials. Biomaterials 11:738–745

    Article  CAS  Google Scholar 

  • Lee CH, Takagi H, Okamoto H, Kato M, Usuki A (2009) Synthesis, characterization, and properties of polyurethanes containing 1,4:3,6-dianhydro-D-sorbitol. J Polym Sci A Polym Chem 47:6025–6031

    Article  CAS  Google Scholar 

  • Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  • Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  • Leonard M, Rastello de Boisseon M, Hubert P, Dellacherie E (2004) Production of microspheres based on hydrophobically associating alginate derivatives by dispersion/gelation in aqueous sodium chloride solutions. J Biomed Mater Res 68A:335–342

    Article  CAS  Google Scholar 

  • Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014a) Reactivity and regio-selectivity of renewable building blocks for the synthesis of water-dispersible polyurethane prepolymers. ACS Sustain Chem Eng 2:788–797

    Article  CAS  Google Scholar 

  • Li Y, Noordover BAJ, van Benthem RATM, Koning CE (2014b) Property profile of poly(urethane urea) dispersions containing dimer fatty acid-, sugar- and amino acid-based building blocks. Eur Polym J 59:8–18

    Article  CAS  Google Scholar 

  • Li L, Ying X, Liu J, Li X, Zhang W (2015) Molecularly imprinted polyurethane grafted calcium alginate hydrogel with specific recognition for proteins. Mater Lett 143:248–251

    Article  CAS  Google Scholar 

  • Lim D-I, Park H-S, Park J-H, Knowles JC, Gong M-S (2013) Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly (ϵ-caprolactone) diol. J Bioact Compat Polym 28:274–288

    Article  CAS  Google Scholar 

  • Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558

    Article  CAS  Google Scholar 

  • Liu X, Xu K, Liu H, Cai H, Su J, Fu Z, Guo Y, Chen M (2011) Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Prog Org Coat 72:612–620

    Article  CAS  Google Scholar 

  • Marín R, Muñoz-Guerra S (2008) Linear polyurethanes made from threitol: acetalized and hydroxylated polymers. J Polym Sci Part A: Polym Chem 46:7996–8012

    Article  CAS  Google Scholar 

  • Marín R, de Paz MV, Ittobane N, Galbis JA, Muñoz-Guerra S (2009) Hydroxylated linear polyurethanes derived from sugar alditols. Macromol Chem Phys 210:486–494

    Article  CAS  Google Scholar 

  • Marín R, Alla A, Martínez de Ilarduya A, Muñoz-Guerra S (2012) Carbohydrate-based polyurethanes: a comparative study of polymers made from isosorbide and 1,4-butanediol. J Appl Polym Sci 123:986–994

    Article  CAS  Google Scholar 

  • Matsui M, Ono L, Akcelrud L (2012) Chitin/polyurethane networks and blends: evaluation of biological application. Polym Test 31:191–196

    Article  CAS  Google Scholar 

  • Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44:6827–6835

    Article  CAS  Google Scholar 

  • Metcalfe A, Desfaits AC, Salazkin I, Yahia L, Sokolowski WM, Raymond J (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497

    Article  CAS  Google Scholar 

  • Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevices 4:89–96

    Article  Google Scholar 

  • Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci U S A 103:3540–3545

    Article  CAS  Google Scholar 

  • Mørch YA, Holtan S, Donati I, Strand BL, Skjäk-Braek G (2007) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480

    Article  CAS  Google Scholar 

  • de Mulder ELW, Hannink G, Koens MJW, Löwik DWPM, Verdonschot N, Buma P (2013) Characterization of polyurethane scaffold surface functionalization with diamines and heparin. J Biomed Mater Res Part A 101A:919–922

    Article  CAS  Google Scholar 

  • Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Moulounguim Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792

    Article  CAS  Google Scholar 

  • Noreen A, Mahmood Zia K, Zuber M, Tabasum S, Fawad Zahoor A (2016) Bio-based polyurethane: an efficient and environment friendly coating systems. Prog Org Coat 91:25–32

    Article  CAS  Google Scholar 

  • Oh S-Y, Kang M-S, Knowles JC, Gong M-S (2015) Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties. J Biomater Appl 30:327–337

    Article  CAS  Google Scholar 

  • Parisi M, Manzano VE, Flor S, Lissarrague MH, Ribba L, Lucangioli S, D’Accorso NB, Goyanes S (2015) Polymeric prosthetic systems for sitespecific drug administration: physical and chemical properties. In: Kumar Thakur V, Kumari Thakur M (eds) Handbook of polymers for pharmaceutical technologies, structure and chemistry, Structure and chemistry, vol 1. Scrivener Publishing/Wiley, Hoboken, pp 369–412

    Google Scholar 

  • Park H-S, Gong M-S, Knowles JC (2013) Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility. J Mater Sci Mater Med 24:281–294

    Article  CAS  Google Scholar 

  • de Paz MV, Marín R, Zamora F, Hakkou K, Alla A, Galbis JA, Muñoz-Guerra S (2007) Linear polyurethanes derived from alditols and diisocyanates. J Polym Sci Part A: Polym Chem 45:4109–4117

    Article  CAS  Google Scholar 

  • de Paz MV, Zamora F, Begines B, Ferris C, Galbis JA (2010) Glutathione-mediated biodegradable polyurethanes derived from L-arabinitol. Biomacromolecules 11:269–276

    Article  CAS  Google Scholar 

  • Prömpers G, Keul H, Höcker H (2005) Polyurethanes with pendant hydroxy groups: polycondensation of D-mannitol-1,2:5,6-dicarbonate with diamines. Des Monomers Polym 8:547–569

    Article  Google Scholar 

  • Prömpers G, Keul H, Höcker H (2006) Polyurethanes with pendant hydroxy groups: polycondensation of 1,6-bis-O-phenoxycarbonyl-2,3∶4,5-di-O-isopropylidenegalactitol and 1,6-di-O-phenoxycarbonylgalactitol with diamines. Green Chem 8:467–478

    Article  Google Scholar 

  • Rees DA, Samuel JWB (1967) The structure of alginic acid. Part VI Minor features and structural variations. J Chem Soc C:2295–2298

    Google Scholar 

  • Rokicki G, Piotrowska A (2002) A new route to polyurethanes from ethylene carbonate. Polymer 43:2927–2935

    Article  CAS  Google Scholar 

  • Rokicki G, Parzuchowski, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26:707–761

    Article  CAS  Google Scholar 

  • Sanda F, Takata T, Endo T (1995) Synthesis of a novel optically active nylon-1 polymer: anionic polymerization of L-leucine methylester isocyanate. J Polym Sci A Polym Chem 33:2353–2358

    Article  CAS  Google Scholar 

  • Saralegi A, Fernandes SCM, Alonso-Varona A, Palomares T, Foster EJ, Weder C, Eceiza A, Corcuera MA (2013) Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Biomacromolecules 14:4475–4482

    Article  CAS  Google Scholar 

  • Sardon H, Irusta L, Fernández-Berridi MJ (2009) Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: comparison between zirconium and tin catalysts in the polymerization process. Prog Org Coat 66:291–295

    Article  CAS  Google Scholar 

  • Savelyev Y, Markovskaya L, Olga Savelyeva O, Akhranovich E, Parkhomenko N, Travinskaya T (2015) Degradable polyurethane foams based on disaccharides. J Appl Polym Sci 132:42131

    Article  CAS  Google Scholar 

  • Sideridou ID, Achilias DS, Karava O (2006) Reactivity of benzoyl peroxide/amine system as an initiator for the free radical polymerization of dental and orthopaedic dimethacrylate monomers: effect of the amine and monomer chemical structure. Macromolecules 39:2072–2080

    Article  CAS  Google Scholar 

  • Sionkowska A (2013) Natural polymers as components of blends for biomedical applications. In: Dumitriu S, Popa V (eds) Polymeric biomaterials, Structure and Function, vol 1. CRC Press, Boca Raton, pp 309–342

    Chapter  Google Scholar 

  • Small W, Wilson TS, Benett WJ, Loge J, Maitland D (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213

    Article  Google Scholar 

  • Solanki A, Mehta J, Thakore S (2014) Structure–property relationships and biocompatibility of carbohydrate crosslinked polyurethanes. Carbohydr Polym 110:338–344

    Article  CAS  Google Scholar 

  • Solanki AR, Kamath BV, Thakore S (2015) Carbohydrate crosslinked biocompatible polyurethanes: synthesis, characterization, and drug delivery studies. J Appl Polym Sci 132:42223

    Article  CAS  Google Scholar 

  • Strand BL, Mørch YA, Syvertsen KR, Espevik T, Skjåk-Braek G (2003) Visualization of alginate–poly-L-lysine–alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng 82:386–394

    Article  CAS  Google Scholar 

  • Sun X, Gao H, Wu G, Wang Y, Fan Y, Ma J (2011) Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int J Pharm 412:52–58

    Article  CAS  Google Scholar 

  • Sun C, Niu Y, Tong F, Mao C, Huang X, Zhao B, Shen J (2013) Preparation of novel electrochemical glucose biosensors for whole blood based on antibiofouling polyurethane-heparin nanoparticles. Electrochim Acta 97:349–356

    Article  CAS  Google Scholar 

  • Szycher M (2013) Waterborne polyurethanes. In: Szycher M (ed) Szycher’s handbook of polyurethanes, 2nd edn. CRC Press, Boca Raton, pp 417–448

    Google Scholar 

  • Thiem J, Lüders H (1986) Synthesis and properties of polyurethanes derived from diaminodianhydroalditols. Makromol Chem 187:2775–2785

    Article  CAS  Google Scholar 

  • Tomita H, Sand F, Endo T (2001) Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J Polym Sci Part A: Polym Chem 39:851–859

    Article  CAS  Google Scholar 

  • Travinskaya T, Savelyev Y, Mishchuk E (2014) Waterborne polyurethane based starch containing materials: preparation, properties and study of degradability. Polym Degrad Stab J 101:102–108

    Article  CAS  Google Scholar 

  • Varma AJ, Kennedy JF, Galgali P (2004) Synthetic polymers functionalized by carbohydrates: a review. Carbohydr Polym 56:429–445

    Article  CAS  Google Scholar 

  • Velankar S, Cooper SL (1998) Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules 31:9181–9192

    Article  CAS  Google Scholar 

  • Velankar S, Cooper SL (2000a) Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 33:382–394

    Article  CAS  Google Scholar 

  • Velankar S, Cooper SL (2000b) Microphase separation and rheological properties of polyurethane melts. 3. Effect of block incompatibility on the viscoelastic properties. Macromolecules 33:395–403

    Article  CAS  Google Scholar 

  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang K, Kim S (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  CAS  Google Scholar 

  • Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF (2011) Challenges for the effective molecular imprinting of proteins. Biomaterials 32:3008–3020

    Article  CAS  Google Scholar 

  • Versteegen RM, Sijbesma RP, Meijer EW (1999) [n]-polyurethanes: synthesis and characterization. Angew Chem Int Ed 38:2917–2919

    Article  CAS  Google Scholar 

  • Vlakh EG, Tennikova TB (2009) Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. J Chromatogr A 1216:2637–2650

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Z, Jain V, Yi J, Mueller S, Sokolov J, Liu Z, Levon K, Rigas B, Rafailovich MH (2010) Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sensors Actuators B Chem 146:381–387

    Article  CAS  Google Scholar 

  • Wang J, Ying X, Li X, Zhang W (2014) Preparation, characterization and swelling behaviors of polyurethane-grafted calcium alginate hydrogels. Mater Lett 126:263–266

    Article  CAS  Google Scholar 

  • Whelan Jr JM, Hill M, Cotter RJ (1963) Multiple cyclic carbonate polymers. US Patent 3072613

    Google Scholar 

  • Wibullucksanakul S, Hashimoto K, Okada M (1996a) Synthesis of polyurethanes from saccharide-derived diols and diisocyanates and their hydrolyzability. Macromol Chem Phys 197:135–146

    Article  Google Scholar 

  • Wibullucksanakul S, Hashimoto K, Okada M (1996b) Swelling behavior and controlled release of new hydrolyzable poly(ether urethane) gels derived from saccharide and L-lysine derivatives and poly(ethylene glycol). Macromol Chem Phys 197:1865–1876

    Article  CAS  Google Scholar 

  • Wibullucksanakul S, Hashimoto K, Okada M (1997) Hydrolysis and release behavior of hydrolyzable poly(etherurethane) gels derived from saccharide-, L-lysine-derivatives, and poly(propylene glycol). Macromol Chem Phys 198:305–319

    Article  CAS  Google Scholar 

  • Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299

    Article  CAS  Google Scholar 

  • Xu M, Shi XH, Chen HJ, Xiao T (2010) Synthesis and enrichment of a macromolecular surface modifier PP-b-PVP for polypropylene. Appl Surf Sci 256:3240–3244

    Article  CAS  Google Scholar 

  • Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263

    Article  CAS  Google Scholar 

  • Yamanaka C, Hasimoto K (2002) Synthesis of new hydrolyzable polyurethanes from L-gulonic acid-derived diols and diisocyanates. J Polym Sci Part A: Polym Chem 40:4158–4166

    Article  CAS  Google Scholar 

  • Ying X, Qi L, Li X, Zhang W, Cheng G (2013) Stimuli-responsive recognition of BSA-imprinted poly vinyl acetate grafted calcium alginate core-shell hydrogel microspheres. J Appl Polym Sci 127:3898–3909

    Article  CAS  Google Scholar 

  • Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90

    Article  CAS  Google Scholar 

  • Zenner MD, Xia Y, Chen JS, Kessler MR (2013) Polyurethanes from isosorbide-based diisocyanates. ChemSusChem 6:1182–1185

    Article  CAS  Google Scholar 

  • Zenner MD, Madbouly SA, Chen JS, Kessler MR (2015) Unexpected tackifiers from isosorbide. ChemSusChem 8:448–451

    Article  CAS  Google Scholar 

  • Zhang F, Cheng G, Ying X (2006) Emulsion and macromolecules templated alginate based polymer microspheres. React Funct Polym 66:712–719

    Article  CAS  Google Scholar 

  • Zhang Q, Liao J-F, Shi X-H, Qiu Y-G, Chen H-J (2015) Surface biocompatible construction of polyurethane by heparinization. J Polym Res 22:68

    Article  CAS  Google Scholar 

  • Zhao K, Cheng G, Huang J, Ying X (2008) Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. React Funct Polym 68:732–741

    Article  CAS  Google Scholar 

  • Zhu Y, Molinier V, Durand M, Lavergne A, Aubry JM (2009) Amphiphilic properties of hydrotropes derived from isosorbide: Endo/exo isomeric effects and temperature dependence. Langmuir 25:13419–13425

    Article  CAS  Google Scholar 

  • Zia KM, Barikani M, Bhatti IA, Zuber M, Bhatti HN (2008a) Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers. J Appl Polym Sci 110:769–776

    Article  CAS  Google Scholar 

  • Zia KM, Bhatti IA, Barikani M, Zuber M, Sheikh MA (2008b) XRD studies of chitin-based polyurethane elastomers. Int J Biol Macromol 43:136–141

    Article  CAS  Google Scholar 

  • Zia KM, Zia F, Zuber M, Rehman S, Ahmad MN (2015) Alginate based polyurethanes: a review of recent advances and perspective. Int J Biol Macromol 79:377–387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the National Research Council of Argentina (CONICET, Project PIP 11220110100370CO), the National Agency for Promotion of Science and Technology (ANPCyT, PICT 2012-0717), and the University of Buenos Aires (Project 20020130100571BA) is gratefully acknowledged. The authors are research members from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Varela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manzano, V.E., Kolender, A.A., Varela, O. (2017). Synthesis and Applications of Carbohydrate-Based Polyurethanes. In: Goyanes, S., D’Accorso, N. (eds) Industrial Applications of Renewable Biomass Products. Springer, Cham. https://doi.org/10.1007/978-3-319-61288-1_1

Download citation

Publish with us

Policies and ethics