Skip to main content

Abstract

This paper presents a dynamic zoom ADC for audio applications. It achieves 109-dB DR, 106-dB SNR, and 103-dB SNDR in a 20-kHz bandwidth, while dissipating 1.12 mW and occupying only 0.16 mm2 in 0.16-μm CMOS. This translates to state-of-the-art energy and area efficiency. In this paper, the system- and circuit-level design of the ADC will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While it is trivial that lower thermal noise requires larger capacitors in DT circuits, this is also true for continuous-time circuits: lower thermal noise implies lower resistances and, consequently, larger capacitors for the same total bandwidth.

References

  1. Chae, Y., Souri, K., Makinwa, K.A.A.: A 6.3 μW 20 bit incremental zoom ADC with 6 ppm INL and 1 μV offset. IEEE J. Solid State Circuits. 48(12), 3019–3027 (2013)

    Article  Google Scholar 

  2. Sechang, Oh., Jung, W., Yang, K., Blaauw, D., Sylvester, D.: 15.4b incremental sigma-delta capacitance-to-digital converter with zoom-in 9b asynchronous SAR. 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, pp. 1–2 (2014)

    Google Scholar 

  3. Venca, A., Ghittori, N., Bosi, A., Nani, C.: A 0.076 mm2 12 b 26.5 mW 600 MS/s 4-way interleaved subranging SAR- ΔΣ ADC with on-chip buffer in 28 nm CMOS. IEEE J. Solid State Circuits. 51(12), 2951–2962 (2016)

    Article  Google Scholar 

  4. Shu, Y.S., Kuo, L.T., Lo, T.Y.: An oversampling SAR ADC with DAC mismatch error shaping achieving 105-dB SFDR and 101-dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J. Solid State Circuits. 51(12), 2928–2940 (2016)

    Article  Google Scholar 

  5. Dong, Y., Yang, W., Schreier, R., Sheikholeslami, A., Korrapati, S.: A continuous-time 0–3 MASH ADC achieving 88-dB DR with 53 MHz BW in 28 nm CMOS. IEEE J. Solid State Circuits. 49(12), 2868–2877 (2014)

    Article  Google Scholar 

  6. Gharbiya, A., Johns, D.A.: A 12-bit 3.125 MHz bandwidth 0–3 MASH Delta-sigma modulator. IEEE J. Solid State Circuits. 44(7), 2010–2018 (2009)

    Article  Google Scholar 

  7. Liu, C.C., Huang, M.C., Tu, Y.H.: A 12 bit 100 MS/s SAR-assisted digital-slope ADC. IEEE J. Solid State Circuits. 51(12), 2941–2950 (2016)

    Article  Google Scholar 

  8. Sanyal A., Sun N.: A 18.5-fJ/step VCO-based 0–1 MASH ΔΣ ADC with digital background calibration. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, pp. 1–2 (2016)

    Google Scholar 

  9. van der Goes, F., Ward, C., Astgimath, S., Yan, H., Riley, J., Mulder, J., Wang, S., Bult, K.: 11.4 A 1.5-mW 68-dB SNDR 80-MS/s 2x interleaved SAR assisted pipelined ADC in 28nm CMOS. Proc. IEEE International Solid-State Circuits Conference, San Francisco, pp. 200–201 (2014)

    Google Scholar 

  10. Gönen, B., Sebastiano, F., van Veldhoven, R., Makinwa, K.A.A.: A 1.65mW 0.16mm2 dynamic zoom ADC with 107.5dB DR in 20kHz BW. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, pp. 282–283 (2016)

    Google Scholar 

  11. Gönen, B., Sebastiano, F., Quan, R., van Veldhoven, R., Makinwa, K.A.A.: A dynamic zoom ADC with 109-dB DR for audio applications. IEEE J. Solid-State Circuits, (accepted for publication)

    Google Scholar 

  12. Schreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. John Wiley and Sons, Hoboken (2005)

    Google Scholar 

  13. Murmann, B.: A/D converter trends: power dissipation, scaling and digitally assisted architectures. 2008 IEEE Custom Integrated Circuits Conference, San Jose, pp. 105–112 (2008)

    Google Scholar 

  14. Murmann, B.: ADC Performance survey 1997–2016. [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html

  15. Pelgrom, M.J.M.: Analog-to-Digital Conversion. Springer, Cham (2017)

    Book  Google Scholar 

  16. Chae, Y., Han, G.: Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE J. Solid State Circuits. 44(2), 458–472 (2009)

    Article  Google Scholar 

  17. Christen, T.: A 15-bit 140-μW scalable-bandwidth inverter-based ΔΣ modulator for a MEMS microphone with digital output. IEEE J. of Solid-State Circuits. 48(7), 1605–1614 (2013)

    Article  Google Scholar 

  18. Lee, S., Jo, W., Song, S., Chae, Y.: A 300-μW audio ΔΣ modulator with 100.5-dB DR using dynamic bias inverter. IEEE Trans. Circuits Syst. I, Reg Papers. 63(11), 1866–1875 (Nov. 2016)

    Article  Google Scholar 

  19. Steiner, M., Greer, N.: 15.8 A 22.3b 1kHz 12.7mW switched-capacitor ΔΣ modulator with stacked split-steering amplifiers. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, pp. 284–286 (2016)

    Google Scholar 

  20. van Veldhoven, R.H.M., van Roermund, A.H.M.: Robust Sigma Delta Converters. Springer, Dordrecht (2017)

    Google Scholar 

  21. van Veldhoven, R.H.M., Rutten, R., Breems, L.J.: An inverter-based hybrid ΔΣ modulator. 2008 IEEE International Solid-State Circuits Conference – Digest of Technical Papers, San Francisco, pp. 492–630 (2008)

    Google Scholar 

  22. van Veldhoven, R.H.M, Nizza, N., Breems, L.J.: Technology portable, 0.04mm2, Ghz-rate ΔΣ modulators in 65nm and 45nm CMOS. 2009 Symposium on VLSI Circuits, Kyoto, pp. 72–73 (2009)

    Google Scholar 

  23. Souri, K., Chae, Y., Makinwa, K.A.A.: A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0.15°C (3σ) from −55°C to 125°C. IEEE J. Solid State Circuits. 48(1), 292–301 (2013)

    Article  Google Scholar 

  24. De Berti, C., Malcovati, P., Crespi, L., Baschirotto, A.: A 106-dB A-weighted DR low-power continuous-time ΔΣ modulator for MEMS microphones. IEEE J. Solid State Circuits. 51(7), 1607–1618 (2016)

    Article  Google Scholar 

  25. Billa, S., Sukumaran, A., Pavan, S.: A280-μW 24-kHz-BW 98.5dB-SNDR chopped single-bit CT ΔΣM achieving <10-Hz 1/f noise corner without chopping artifacts. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, pp. 276–277 (2016)

    Google Scholar 

  26. Leow, Y.H., Tang, H., Sun, Z.C., Siek, L.: A 1 V 103-dB 3rd-order audio continuous-time ΔΣ ADC with enhanced noise shaping in 65 nm CMOS. IEEE J. Solid State Circuits. 51(11), 2625–2638 (2016)

    Article  Google Scholar 

  27. Lo, T.Y.: A 102dB dynamic range audio sigma-delta modulator in 40nm CMOS. 2011 IEEE Asian Solid State Circuits Conference (A-SSCC), Jeju, pp. 257–260 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Gönen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gönen, B., Sebastiano, F., van Veldhoven, R., Makinwa, K.A.A. (2018). A Hybrid ADC for High Resolution: The Zoom ADC. In: Harpe, P., Makinwa, K., Baschirotto, A. (eds) Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-319-61285-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61285-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61284-3

  • Online ISBN: 978-3-319-61285-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics