Skip to main content

Abstract

While conventional flash, pipelined, successive-approximation-register (SAR), and ΔΣ analog-to-digital converters (ADCs) have demonstrated a fundamental trade-off between speed and resolution, a recent trend of hybrid ADCs nicely blends different architectures into one ADC design, enabling new breakthroughs in resolution, speed, area, and power efficiency. The mixture of multiple ADC architectures also opens up a new possibility to configure an ADC across a wide speed and resolution range. This paper introduces a SAR-based hybrid design incorporating with a hybrid DAC linearization scheme to extend the application of a power-efficient SAR ADC for high-resolution sensor readout interfaces. This architecture allows an ADC to be configured between SAR- and ΔΣ-type performance with flexible sampling rate and is especially suitable for various Internet of Things (IoT) sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Helleputte, N. et al.: A multi-parameter signal-acquisition SoC for connected personal health applications. IEEE ISSCC Digest of Technical Papers, pp. 314–315 (2014)

    Google Scholar 

  2. Murmann, B.: ADC Performance survey 1997–.2016. Stanford Univ. [Online]. Available: http://www.stanford.edu/_murmann/adcsurvey.html

  3. Analog Devices.: AD7485, 1 MSPS, serial 14-Bit SAR ADC datasheet [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/AD7485.pdf

  4. Kull, L. et al.: A 90GS/s 8b 667mW 64× interleaved SAR ADC in 32 nm digital SOI CMOS. IEEE ISSCC Digest of Technical Papers, pp. 378–379 (2014)

    Google Scholar 

  5. Chen, S.W.M., Brodersen, R.W.: A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS. IEEE JSSC. 41(12), 2669–2680 (2006)

    Google Scholar 

  6. Chae, Y., Souri, K., Makinwa, K.A.A.: A 6.3 μW 20 bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE JSSC. 48(12), 3019–3027 (2013)

    Google Scholar 

  7. Sanyal, A. et al.: A hybrid SAR-VCO ΔΣ ADC with first-order noise shaping. Proceedings of the custom integrated circuits conference, IEEE, pp. 1–4 (2014)

    Google Scholar 

  8. Liu, C.C., Huang, M.C., Tu, Y.H.: A 12 bit 100 MS/s SAR-assisted digital-slope ADC. IEEE JSSC. 51(12), 2941–2950 (2016)

    Google Scholar 

  9. Dong, Y., et al.: A continuous-time 0–3 MASH ADC achieving 88 dB DR with 53 MHz BW in 28 nm CMOS. IEEE JSSC. 49(12), 2868–2877 (2014)

    Google Scholar 

  10. Lee, C.C., Flynn, M.P.: A SAR-assisted two-stage pipeline ADC. IEEE JSSC. 46(4), 859–869 (2011)

    Google Scholar 

  11. Tsai, H.-C., et al.: A 64-fJ/conv.-step continuous-time ΣΔ modulator in 40-nm CMOS using asynchronous SAR quantizer and digital ΔΣ truncator. IEEE JSSC. 48(11), 2637–2648 (2013)

    Google Scholar 

  12. Straayer, M.Z., Perrott, M.H.: A 12-bit, 10-MHz bandwidth, continuous-time ΣΔ ADC with a 5-bit, 950-MS/s VCO-based quantizer. IEEE JSSC. 43(4), 805–814 (2008)

    Google Scholar 

  13. Lin, Y.Z. et al.: A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS. IEEE Symp. VLSI Circuits Digest of Technical Papers, pp. 243–244 (2010)

    Google Scholar 

  14. Fredenburg, J.A., Flynn, M.P.: A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE JSSC. 47(12), 2898–2904 (2012)

    Google Scholar 

  15. Harpe, P., Cantatore, E., van Roermund, A.: An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1 dB SNDR. IEEE ISSCC Digest of Technical Papers, pp. 194–195 (2014)

    Google Scholar 

  16. Adams, R., Nguyen, K.Q.: A 113-dB SNR oversampling DAC with segmented noise-shaped scrambling. IEEE JSSC. 33(12), 1871–1878 (1998)

    Google Scholar 

  17. Shu, Y.-S., Kuo, L.-T., Lo, T.-Y.: An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE JSSC. 51(12), 2928–2940 (2016)

    Google Scholar 

  18. Karanicolas, A.N., Lee, H.-S., Barcrania, K.L.: A 15-b 1-Msample/s digitally self-calibrated pipeline ADC. IEEE JSSC. 28(12), 1207–1215 (1993)

    Google Scholar 

  19. Kuttner, F.: A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13µm CMOS. In: IEEE ISSCC digest of technical papers, pp. 176–177 (2002)

    Google Scholar 

  20. Tai, H.-Y. et al.: A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS. in IEEE ISSCC Digest of Technical Papers, pp. 196–197 (2014)

    Google Scholar 

  21. Sukumaran, A., Pavan, S.: Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback. IEEE JSSC. 49(11), 2515–2525 (2014)

    Google Scholar 

  22. Perez, A.P., Bonizzoni, E., Maloberti, F.: A 84dB SNDR 100kHz bandwidth low-power single op-amp third-order ΔΣ modulator consuming 140μW. IEEE ISSCC Digest of Technical Papers, pp. 478–479 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Shiang Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shu, YS., Kuo, LT., Lo, TY. (2018). A Hybrid Architecture for a Reconfigurable SAR ADC. In: Harpe, P., Makinwa, K., Baschirotto, A. (eds) Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-319-61285-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61285-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61284-3

  • Online ISBN: 978-3-319-61285-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics