Skip to main content

Time-Based Biomedical Readout in Ultra-Low-Voltage, Small-Scale CMOS Technology

  • Chapter
  • First Online:
Book cover Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design

Abstract

Personalized healthcare solutions are pushing the boundaries for low-power and low-cost sensor readout devices. However, achieving this requirement requires a trade-off between cost, power consumption and accuracy or the dynamic range capability of these devices. In this paper, we outline the main reasons for this trade-off and present existing solutions in literature. In specific, we identify time-domain operation as one of the promising techniques to overcome this trade-off. We present the state-of-art architectures based on time-based operation and discuss their challenges in designing for low-power, low-cost biomedical sensor readout. Furthermore, we propose and discuss a time-based readout design that can overcome these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To be exact, the model and the following analysis hold true for sampled systems such as sample-and-hold circuits, ADCs. It does not hold true for some blocks such as instrumentation amplifiers (IA) and low-noise amplifiers (LNA). However, since almost any analog signal chain will contain ADCs, the overall conclusion of the analysis will still be applicable and relevant to our discussion in this paper.

  2. 2.

    K f has been extracted from the BSIM4 spice model parameters.

References

  1. Patel, S., Hyung, P., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9(1), 1 (2012)

    Article  Google Scholar 

  2. Blaauw, D. et al.: Iot Design Space Challenges: Circuits and Systems. VLSI-Technology, Honolulu (2014)

    Google Scholar 

  3. Penders, J., van Hoof, C., Gyselinckx, B.: Bio-Medical Application of WBAN: Trends and Examples. pp. 279–302. Bio-Medical CMOS ICs, Boston (2011)

    Google Scholar 

  4. Islam, A.B., Islam, S.K., Rahman, T.: A vertically aligned carbon nanofiber (VACNF) based amperometric glucose sensor. 2009 International Semiconductor Device Research Symposium, College Park (2009)

    Google Scholar 

  5. Islam, M.Z., Haider, M.R., Huque, M.A., Adeeb, M.A., Rahman, S., Islam, S.K.: A low power sensor signal processing circuit for implantable biosensor applications. Smart Mater. Struct. 16(2), 525 (2007)

    Article  Google Scholar 

  6. Baker, D.A., Gough, D.A.: A continuous, implantable lactate sensor. Anal. Chem. 67(9), 1536–1540 (1995)

    Article  Google Scholar 

  7. Jeevarajan, A.S., Vani, S., Taylor, T.D., Anderson, M.M.: Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor. Biotechnol. Bioeng. 78(4), 467–472 (2002)

    Article  Google Scholar 

  8. Helleputte, N.V., Konijnenburg, M., Hyejung, K., Pettine, J., Jee, D.-W., Breeschoten, A., Morgado, A., Torfs, T., Groot, H.D., Hoof, C.V., Yazicioglu, R.F.: A multi-parameter signal-acquisition SoC for. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Fransisco (2014)

    Google Scholar 

  9. Bult, K.: The effect of technology scaling on power dissipation in analog circuits. Analog Circuit Design: RF Circuits: Wide band, Front-Ends, DAC’s, Design Methodology and Verification for RF and Mixed-Signal Systems, Low Power and Low Voltage, pp. 51–294. Springer, Dordrecht (2006)

    Google Scholar 

  10. Annema, A.J., Nauta, B., Langevelde, R.V., Tuinhout, H.: Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid State Circuits. 40(1), 132–143 (2005)

    Article  Google Scholar 

  11. Annema, A.J.: Analog circuit performance and process scaling. IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process. 46(6), 711–725 (1999)

    Article  Google Scholar 

  12. Lee, K., et al.: The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application. IEEE Trans. Electron Devices. 52(7), 1415–1422 (2005)

    Article  Google Scholar 

  13. Baschirotto, A., Chironi, V., Cocciolo, G., D’Amico, S., De Matteis, M., Delizia, P.: Low power analog design in scaled technologies. Proc. Topical Workshop Electron. Particle Phys.,pp. 103–110, (2009)

    Google Scholar 

  14. Murmann, B.: A/D converter trends: power dissipation, scaling and digitally assisted architectures. 2008 IEEE Custom Integrated Circuits Conference, San Jose (2008)

    Google Scholar 

  15. Enz, C.C., Vittoz, E.A.: Chapter 1.2 Cmos Low-Power Analog Circuit Design. (2001)

    Google Scholar 

  16. Murmann, B., Nikaeen, P., Connelly, D., Dutton, R.: Impact of scaling on analog performance and associated modeling needs. IEEE Trans. Electron Devices. 53(9), 160–2167 (2006)

    Article  Google Scholar 

  17. Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York (2001)

    Google Scholar 

  18. Bult, K., Geelen, G.J.: The CMOS gain-boosting technique. Analog Integr. Circ. Sig. Process. 1(2), 118–135 (1991)

    Article  Google Scholar 

  19. Chatterjee, S., Tsividis, Y., Kinget, P.: 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid State Circuits. 40(12), 2373–2387 (2005)

    Article  Google Scholar 

  20. Lehmann, T., Cassia, M.: 1-V power supply CMOS cascode amplifier. IEEE J. Solid State Circuits. 36(7), 1082–1086 (2001)

    Article  Google Scholar 

  21. Stockstad, T., Yoshizawa, H.: A 0.9 V, 0.51 μA rail-to-rail CMOS operational amplifier. IEEE J. Solid State Circuits. 37(3), 286–292 (2002)

    Article  Google Scholar 

  22. Wang, R., Harjani, R.: Partial positive feedback for gain enhancement of low-power CMOS OTAs. Low-Voltage Low-Power Analog Integrated Circuits: A Special Issue of Analog Integrated Circuits and Signal Processing An International Journal 8(1) (1995), Boston, Springer US, pp. 21–35 (1995)

    Google Scholar 

  23. Drost, B., Talegaonkar, M., Hanumolu, P.K.: Analog filter design using ring oscillator integrators. IEEE J. Solid State Circuits. 47(12), 3120–3129 (2012)

    Article  Google Scholar 

  24. Park, M., Perott, M.H.: IEEE J. Solid State Circuits. 44(12), 3344–3358 (2009)

    Article  Google Scholar 

  25. Mohan, R., Yan, L.L., Gielen, G., Hoof, C., Yazicioglu, R.: 0.35 V time-domain-based instrumentation amplifier. Electron. Lett. 50(21), 1513–1514 (2014)

    Article  Google Scholar 

  26. Enz, C., Temes, G.: Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE. 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  27. Wu, R., Makinwa, K.K.A.A., Huijsing, J.: A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J. Solid State Circuits. 44(12), 3232–3243 (2009)

    Article  Google Scholar 

  28. Akita, I., Ishida, M.: A chopper-stabilized instrumentation amplifier using area-efficient self-trimming technique. Analog Integr. Circ. Sig. Process. 81(3), 571–582 (2014)

    Article  Google Scholar 

  29. Tang, A.: A 3 /spl mu/V-offset operational amplifier with 20 nV//spl radic/Hz input noise PSD at DC employing both chopping and autozeroing. 2002 IEEE International Solid-State Circuits Conference, San Fransisco (2002)

    Google Scholar 

  30. Pertijs, M., Kindt, W.: A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J. Solid State Circuits. 45(10), 2044–2056 (2010)

    Article  Google Scholar 

  31. Mohan, R., Zaliasl, S.G.G.G., Hoof, C., Yazicioglu, R., Helleputte, N.: A 0.6-V, 0.015-mm2, time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE J. Solid State Circuits. 52(1), 298–308 (2017)

    Article  Google Scholar 

  32. Mesgarani, A., Alam, M., Nelson, F., Ay, S.: Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS. 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle (2010)

    Google Scholar 

  33. Abo, A., Gray, P.P.R.: A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid State Circuits. 34(5), 599–606 (1999)

    Article  Google Scholar 

  34. Ranuarez, J., Deen, M., Chen, C.-H.: A review of gate tunneling current in MOS devices. Microelectron. Reliab. 46(12), 1939–1956 (2006)

    Article  Google Scholar 

  35. Helleputte, N.V., Kim, S., Kim, H., Kim, J.P., Hoof, C.V., Yazicioglu, R.F.: A 160uA biopotential acquisition IC with fully Integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)

    Article  Google Scholar 

  36. Muller, R., Gambini, S.S., Rabaey, J.: A 0.013 mm2, 5uW , DC-coupled neural signal acquisition IC With 0.5 V supply. IEEE J. Solid State Circuits. 47(1), 232–243 (2012)

    Article  Google Scholar 

  37. Tsividis, Y., Banu, M., Khoury, J.: Continuous-time MOSFET-C filters in VLSI. IEEE J. Solid State Circuits. SC-1(1), 15–30 (1986)

    Article  Google Scholar 

  38. Helleputte, N.V., et al.: A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and Integrated DSP. IEEE J. Solid State Circuits. 50(1), 230–244 (2015)

    Article  Google Scholar 

  39. Fan, Q., Sebastiano, F., Huijsing, J.H., Makinwa, K.A.: A 1.8 W 60 nV Hz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes. IEEE J. Solid State Circuits. 46(7), 1534–1543 (2011)

    Article  Google Scholar 

  40. Ng, K., Xu, Y.: A compact, low input capacitance neural recording amplifier with Cin/Gain of 20fF.V/V. 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu (2012)

    Google Scholar 

  41. Bohorquez, J.L., Yip, M., Chandrakasan, A.P., Dawson, J.L.: A biomedical sensor interface with a sinc filter and interference cancellation. IEEE J. Solid State Circuits. 46(4), 746–756 (2011)

    Article  Google Scholar 

  42. Zou, X., Liew, S., Yao, L., Lian, Y.: A 1V 22μW 32-channel implantable EEG recording IC. 2010 IEEE International Solid-State Circuits Conference, San Fransisco (2010)

    Google Scholar 

  43. Majidzadeh, V., Schmid, A., Leblebici, Y.: Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 5(3), 262–271 (2011)

    Article  Google Scholar 

  44. Naraghi, S., Courcy, M., Flynn, M.P.: A 9-bit, 14 μW and 0.06 mm pulse position modulation ADC in 90nm digital CMOS. IEEE J. Solid-State Circuits. 45(9), 1870 (2010)

    Article  Google Scholar 

  45. Hernandez, L., Prefasi, E.: Analog-to-digital conversion using noise shaping and time encoding. IEEE Trans. Circuits Syst. I, Reg. Papers. 55(7), 2026–2037 (2008)

    Article  MathSciNet  Google Scholar 

  46. Dhanasekaran, V., et al.: A 20MHz BW 68dB DR CT ΔΣ ADC based on a multi-bit time-domain quantizer and feedback element. 2009 IEEE International Solid-State Circuits Conference, San Fransisco (2009)

    Google Scholar 

  47. Iwata, A., Sakimura, N., Nagata, M., Morie, T.: The architecture of delta sigma analog-to-digital converters using a voltage-controlled oscillator as a multibit quantizer. IEEE Trans. Circuits Syst. II, Analog Digit Signal Process. 46(7), 941–945 (1999)

    Article  Google Scholar 

  48. Kuppambatti, J., Vigraham, B., Kinget, P.: 17.9 A 0.6V 70MHz 4th-order continuous-time butterworth filter with 55.8dB SNR, 60dB THD at +2.8dBm output signal power. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Fransisco (2014)

    Google Scholar 

  49. Cuk, S.M.: Modeling, Analysis and Design. Thesis – California Institute of Technology, Pasadena (1977)

    Google Scholar 

  50. Hanson, S., Foo, Z., Blaauw, D., Sylvester, D.: 0.5 V sub-microwatt CMOS image sensor with pulse-width modulation read-out. IEEE J. Solid State Circuits. 45(4), 759–767 (2010)

    Article  Google Scholar 

  51. Jung, W., Jeong, S., Oh, S., Sylvester, D., Blaauw, D.: 27.6 A 0.7pF-to-10nF fully digital capacitance-to-digital converter using iterative delay-chain discharge. 2015 IEEE International Solid-State Circuits Conference, San Fransisco (2015)

    Google Scholar 

  52. Rethy, J., Smedt, V., Dehaene, W., Gielen, G.: Supply-noise-resilient design of a BBPLL-based force-balanced Wheatstone bridge Interface in 130-nm CMOS. IEEE J. Solid State Circuits. 48(11), 618–627 (2013)

    Google Scholar 

  53. Yurish, S.: Sensors and transducers: frequency output vs voltage output. Sens. Transducers Mag. 49(11), 302–305 (2004)

    Google Scholar 

  54. Middlehoek, S., French, P., Huijsing, J., Lian, W.: Sensors with digital or frequency output. Sensors Actuators. 15(2), 119–133 (1988)

    Article  Google Scholar 

  55. Kindlund, A., Sundgren, H., Lundstrom, I.: Quartz crystal gas monitor with a gas concentrating stage. Sensors Actuators. 6(1), 1–17 (1984)

    Article  Google Scholar 

  56. Danneels, H., Coddens, K., Gielen, G.: A fully-digital, 0.3V, 270 nW capacitive sensor interface without external references. 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki (2011)

    Google Scholar 

  57. Grassi, M., Malcovati, P., Baschirotto, A.: A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid State Circuits. 42(7), 1543–1554 (2007)

    Article  Google Scholar 

  58. Lu, J.H.-L., Inerowicz, M., Joo, S., Kwon, J.-K., Jung, B.: A low-power, wide-dynamic-range semi-digital universal sensor readout circuit using pulsewidth modulation. IEEE Sensors J. 11(5), 1134–1144 (2011)

    Article  Google Scholar 

  59. Rethy, J.V., Danneels, H., Smedt, V.D., Dehaene, W., Gielen, G.E.: Supply-noise-resilient design of a BBPLL-based force-balanced wheatstone bridge interface in 130nm CMOS. IEEE J. Solid Stage Circuits. 48(11), 2618–2627 (2013)

    Article  Google Scholar 

  60. Park, M., Perrott, M.: A VCO-based analog-to-digital converter with second-order Sigma-Delta noise shaping. 2009 IEEE International Symposium on Circuits and Systems, Taipei (2009)

    Google Scholar 

  61. Jiang, W., Hokhikyan, V., Chandrakumar, H., Karkare, V., Markovic, D.: 28.6 A +−50mV linear input-range VCO-based neural-recording front-end with digital non-linearity correction. 2016 IEEE International Solid-State Circuits Conference, San Fransisco (2016)

    Google Scholar 

  62. Booton, R.: Nonlinear control systems with random inputs. IRE Trans. Circ. Theory. 1(1), 9–18 (1954)

    Article  Google Scholar 

  63. Ouzounov, S., Hegt, H., Roermund, A.V.: Sigma–delta modulators operating at a limit cycle. IEEE Trans. Circuits Syst. II. 53(5), 399–403 (2006)

    Article  Google Scholar 

  64. Perrott, M., Trott, M., Sodini, C.: A modeling approach for Σ-Δ fractional-N frequency synthesizers allowing straightforward noise analysis. IEEE J. Solid State Circuits. 37(8), 1028–1038 (2002)

    Article  Google Scholar 

  65. Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101, e215–e220 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachit Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mohan, R., Zaliasl, S., Van Hoof, C., Van Helleputte, N. (2018). Time-Based Biomedical Readout in Ultra-Low-Voltage, Small-Scale CMOS Technology. In: Harpe, P., Makinwa, K., Baschirotto, A. (eds) Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-319-61285-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61285-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61284-3

  • Online ISBN: 978-3-319-61285-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics