Skip to main content

Abstract

This paper presents two high-resolution CMOS temperature sensors intended for the temperature compensation of MEMS/quartz frequency references. One is based on a Wien bridge RC filter, which outputs a temperature-dependent phase shift when driven by a stable frequency; the other is based on a Wheatstone bridge, which outputs a temperature-dependent current. The bridge outputs are digitized by energy-efficient continuous-time delta-sigma modulators. Two prototypes were fabricated in a standard 0.18 μm CMOS technology. Both dissipate less than 200 μW and achieve sub-mK resolution, as well as sub-0.2pJ·K2 resolution FoMs, which corresponds to state-of-the-art energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrott, M.H., et al.: A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1-ps integrated jitter. IEEE J. Solid-State Circuit. 48(1), 276–291 (2013)

    Article  Google Scholar 

  2. Shahmohammadi, M., Souri, K., Makinwa, K.A.A.: A resistor-based temperature sensor for MEMS frequency references. In: 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, pp. 225–228 (2013)

    Google Scholar 

  3. Park, P., Ruffieux, D., Makinwa, K.A.A.: A thermistor-based temperature sensor for a real-time clock with ±2 ppm frequency stability. IEEE J. Solid-State Circuit. 50(7), 1571–1580 (July 2015)

    Article  Google Scholar 

  4. Makinwa, K.A.A.: Smart Temperature Sensor Survey. [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

  5. Wang, G., Heidari, A., Makinwa, K.A.A., Meijer, G.C.M.: An accurate BJT-based CMOS temperature sensor with duty-cycle-modulated output. IEEE Trans Ind Electron. 64(2), 1572–1580 (2017)

    Article  Google Scholar 

  6. Pertijs, M.A.P., Makinwa, K.A.A., Huijsing, J.H.: A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from −55°C to 125°C. IEEE J. Solid-State Circuit. 40(12), 2805–2815 (2005)

    Article  Google Scholar 

  7. Yousefzadeh, B., Shalmany, S.H, Makinwa, K.: A BJT-Based Temperature-to-Digital Converter with ±60mK (3σ) Inaccuracy from −70°C to 125°C in 160nm CMOS. In: 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, pp. 1–2 (2016)

    Google Scholar 

  8. Souri, K., Chae, Y., Thus, F., Makinwa, K.: A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4°C (3σ) from −40 to 125°C. In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, pp. 222–223 (2014)

    Google Scholar 

  9. Anand, T., Makinwa, K.A.A., Hanumolu, P.K.: A VCO based highly digital temperature sensor with 0.034 °C/mV supply sensitivity. IEEE J. Solid-State Circuit. 51(11), 2651–2663 (2016)

    Article  Google Scholar 

  10. Kashmiri, S.M., Xia, S., Makinwa, K.A.A.: A temperature-to-digital converter based on an optimized Electrothermal filter. IEEE J. Solid-State Circuit. 44(7), 2026–2035 (July 2009)

    Article  Google Scholar 

  11. van Vroonhoven, C.P.L., Makinwa, K.A.A.: A CMOS Temperature-to-Digital Converter with an Inaccuracy of ± 0.5° C (3σ) from −55 to 125°C. In: 2008 IEEE international Solid-state circuits Conference – Digest of technical papers, San Francisco, CA, pp. 576–637 (2008)

    Google Scholar 

  12. Heidarpour Roshan, M., et al.: A MEMS-assisted temperature sensor with 20-μK resolution, conversion rate of 200 S/s, and FOM of 0.04 pJK2. IEEE J. Solid-State Circuit. 52(1), 185–197 (2017)

    Article  Google Scholar 

  13. Horng, J.J. et al.: A 0.7V resistive sensor with temperature/voltage detection function in 16 nm FinFET technologies. In: 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, pp. 1–2 (2014)

    Google Scholar 

  14. Wu, C.K., Chan, W.S., Lin, T.H.: A 80kS/s 36μW resistor-based temperature sensor using BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18 μm CMOS. In: 2011 Symposium on VLSI Circuits – Digest of Technical Papers, Honolulu, HI, pp. 222–223 (2011)

    Google Scholar 

  15. Weng, C.H., Wu, C.K., Lin, T.H.: A CMOS thermistor-embedded continuous-Time Delta-sigma temperature sensor with a resolution FoM of 0.65 pJ°C2. IEEE J. Solid-State Circuit. 50(11), 2491–2500 (2015)

    Article  Google Scholar 

  16. Sankaragomathi, K.A., Koo, J., Ruby, R., Otis, B.P.: A ±3ppm 1.1mW FBAR frequency reference with 750MHz output and 750mV supply. In: 2015 IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers, San Francisco, CA, pp. 1–3 (2015)

    Google Scholar 

  17. Tang, X., Pun, K.P., Ng, W.T.: A 0.9V 5kS/s resistor-based time-domain temperature sensor in 90 nm CMOS with calibrated inaccuracy of −0.6°C/0.8°C from −40°C to 125°C. In: 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, pp. 169–172 (2013)

    Google Scholar 

  18. De Graaff, H.C., Huybers, M.T.M.: 1/f noise in polycrystalline silicon resistors. J. Appl. Phys. 54(5), 2504–2507 (1983)

    Article  Google Scholar 

  19. Pan, S., Luo, Y., Shalmany, S.H., Makinwa, K.A.A.: 9.1 A resistor-based temperature sensor with a 0.13pJ·K2 resolution FOM. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, pp. 158–159 (2017)

    Google Scholar 

  20. Billa, S., Sukumaran, A., Pavan, S.: A 280μW 24kHz-BW 98.5 dB-SNDR chopped single-bit CTΔΣM achieving < 10Hz 1/f noise corner without chopping artifacts. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, pp. 276–277 (2016)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yanquan Luo and Saleh Heidary Shalmany for their contributions to the Wien bridge sensor design and Hui Jiang for his work on the Wheatstone bridge sensor. The authors would also like to thank Burak Gönen, Vincent van Hoek, and Said Hussaini for proofreading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sining Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pan, S., Makinwa, K.A.A. (2018). Energy-Efficient High-Resolution Resistor-Based Temperature Sensors. In: Harpe, P., Makinwa, K., Baschirotto, A. (eds) Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-319-61285-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61285-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61284-3

  • Online ISBN: 978-3-319-61285-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics