Skip to main content

Sparse Grid High-Order ADI Scheme for Option Pricing in Stochastic Volatility Models

  • Chapter
  • First Online:
  • 2249 Accesses

Part of the book series: Mathematics in Industry ((TECMI,volume 25))

Abstract

We present a sparse grid high-order alternating direction implicit (ADI) scheme for option pricing in stochastic volatility models. The scheme is second-order in time and fourth-order in space. Numerical experiments confirm the computational efficiency gains achieved by the sparse grid combination technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beam, R.M., Warming, R.F.: Alternating direction implicit methods for parabolic equations with a mixed derivative. SIAM J. Sci. Stat. Comput. 1(1), 131–159 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benhamou, E., Gobet, E., Miri, M.: Time dependent Heston model. SIAM J. Finan. Math. 1, 289–325 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christoffersen, P., Jacobs, K., Mimouni, K.: Volatility dynamics for the S&P500: evidence from realized volatility, daily returns, and option prices. Rev. Financ. Stud. 23, 3141–3189 (2010)

    Article  Google Scholar 

  5. Clarke, N., Parrott, K.: Multigrid for American option pricing with stochastic volatility. Appl. Math. Financ. 6(3), 177–195 (1999)

    Article  MATH  Google Scholar 

  6. Douglas, J.: Alternating direction methods for three space variables. Numer. Math. 4, 41–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas, J., Gunn, J.E.: A general formulation of alternating direction methods. I. Parabolic and hyperbolic problems. Numer. Math. 6, 428–453 (1964)

    MATH  Google Scholar 

  8. Duan, J.: The GARCH option pricing model. Math. Financ. 5(1), 13–32 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Düring, B.: Asset pricing under information with stochastic volatility. Rev. Deriv. Res. 12(2), 141–167 (2009)

    Article  MATH  Google Scholar 

  10. Düring, B., Fournié, M.: High-order compact finite difference scheme for option pricing in stochastic volatility models. J. Comput. Appl. Math. 236(17), 4462–4473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Düring, B., Fournié, M., Jüngel, A.: Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation. Math. Model Numer. Anal. 38(2), 359–369 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Düring, B., Fournié, M., Jüngel, A.: High-order compact finite difference schemes for a nonlinear Black-Scholes equation. Int. J. Theor. Appl. Financ. 6(7), 767–789 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Düring, B., Fournié, M., Rigal, A.: High-order ADI schemes for convection-diffusion equations with mixed derivative terms. In: Azaïez, M. et al. (eds.) Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM’12. Lecture Notes in Computational Science and Engineering 95, pp. 217–226. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  14. Düring, B., Fournié, M., Heuer, C.: High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids. J. Comput. Appl. Math. 271(18), 247–266 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Düring, B., Heuer, C.: High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions. SIAM J. Numer. Anal. 53(5), 2113–2134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Düring, B., Miles, J.: High-order ADI scheme for option pricing in stochastic volatility models. J. Comput. Appl. Math. 316, 109–121 (2017)

    Article  MathSciNet  Google Scholar 

  17. Fournié, M., Rigal, A.: High order compact schemes in projection methods for incompressible viscous flows. Commun. Comput. Phys. 9(4), 994–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. IMACS Elsevier, Iterative Methods Linear Algebra 16, 263–281 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Gupta, M.M., Manohar, R.P., Stephenson, J.W.: A single cell high-order scheme for the convection-diffusion equation with variable coefficients. Int. J. Numer. Methods Fluids 4, 641–651 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gustafsson, B.: The convergence rate for difference approximation to general mixed initial-boundary value problems. SIAM J. Numer. Anal. 18(2), 179–190 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hendricks, C., Ehrhardt, M., Günther, M.: High-order ADI schemes for diffusion equations with mixed derivatives in the combination technique. Appl. Numer. Math. 101, 36–52 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  23. Hilber, N., Matache, A., Schwab, C.: Sparse wavelet methods for option pricing under stochastic volatility. J. Comput. Financ. 8(4), 1–42 (2005)

    Article  Google Scholar 

  24. in’t Hout, K.J., Welfert, B.D.: Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms. Appl. Numer. Math. 57, 19–35 (2007)

    Google Scholar 

  25. in’t Hout, K.J., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Mod. 7, 303–320 (2010)

    Google Scholar 

  26. Hundsdorfer, W.: Accuracy and stability of splitting with stabilizing corrections. Appl. Numer. Math. 42, 213–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003)

    Google Scholar 

  28. Ikonen, S., Toivanen, J.: Efficient numerical methods for pricing American options under stochastic volatility. Numer. Methods Partial Differ. Equ. 24(1), 104–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kreiss, H.O., Thomée, V., Widlund, O.: Smoothing of initial data and rates of convergence for parabolic difference equations. Commun. Pure Appl. Math. 23, 241–259 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liao, W., Khaliq, A.Q.M.: High-order compact scheme for solving nonlinear Black-Scholes equation with transaction cost. Int. J. Comput. Math. 86(6), 1009–1023 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lewis, A.L.: Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach, (2000)

    MATH  Google Scholar 

  32. Mitchell, A.R., Fairweather, G.: Improved forms of the alternating direction methods of Douglas, Peaceman, and Rachford for solving parabolic and elliptic equations. Numer. Math. 6, 285–292 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Financ. 6(4), 25–40 (2003)

    Article  Google Scholar 

  35. Ruijter, M.J., Oosterlee, C.W.: Two-dimensional Fourier cosine series expansion method for pricing financial options. SIAM J. Sci. Comput. 34(5), 642–671 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rigal, A.: Schémas compacts d’ordre élevé: application aux problèmes bidimensionnels de diffusion-convection instationnaire I. C.R. Acad. Sci. Paris. Sr. I Math. 328, 535–538 (1999)

    Google Scholar 

  37. Schiekofer, T.: Die Methode der Finiten Differenzen auf dünnen Gittern zur Lösung elliptischer und parabolischer partieller Differentialgleichungen. PhD thesis, Universität Bonn (1999)

    Google Scholar 

  38. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 148, 1042–1045 (1963)

    MathSciNet  MATH  Google Scholar 

  39. Spotz, W.F., Carey, C.F.: Extension of high-order compact schemes to time-dependent problems. Numer. Methods Partial Differ. Equ. 17(6), 657–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tavella, D., Randall, C.: Pricing Financial Instruments: The Finite Difference Method. John Wiley & Sons, New York (2000)

    Google Scholar 

  41. Zenger, C.: Sparse grids. Technical report, Institut für Informatik, Technische Universität München, Oct. 1990

    Google Scholar 

  42. Zhu, W., Kopriva, D.A.: A spectral element approximation to price European options with one asset and stochastic volatility. J. Sci. Comput. 42(3), 426–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2), 199–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

BD acknowledges support by the Leverhulme Trust research project grant ‘Novel discretisations for higher-order nonlinear PDE’ (RPG-2015-69). CH is supported by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE—Novel Methods in Computational Finance). Further CH acknowledges partial support from the bilateral German-Spanish Project HiPeCa—High Performance Calibration and Computation in Finance, Programme Acciones Conjuntas Hispano-Alemanas financed by DAAD. JM has been supported in part by a studentship under the EPSRC Doctoral Training Partnership (DTP) scheme (grant number EP/L505109/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Düring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Düring, B., Hendricks, C., Miles, J. (2017). Sparse Grid High-Order ADI Scheme for Option Pricing in Stochastic Volatility Models. In: Ehrhardt, M., Günther, M., ter Maten, E. (eds) Novel Methods in Computational Finance. Mathematics in Industry(), vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-61282-9_16

Download citation

Publish with us

Policies and ethics