Skip to main content

Nonlinear Parabolic Equations Arising in Mathematical Finance

  • Chapter
  • First Online:
Novel Methods in Computational Finance

Part of the book series: Mathematics in Industry ((TECMI,volume 25))

Abstract

This survey chapter is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, R., Ishimura, N.: Existence of solutions for the nonlinear partial differential equation arising in the optimal investment problem. Proc. Jpn. Acad. Ser. A. 84, 11–14 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amster, P., Averbuj, C.G., Mariani, M.C., Rial, D.: A Black-Scholes option pricing model with transaction costs. J. Math. Anal. Appl. 303, 688–695 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ankudinova, J., Ehrhardt, M.: On the numerical solution of nonlinear Black-Scholes equations. Comput. Math. Appl. 56, 799–812 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Averbuj, C.G.: Nonlinear integral-differential evolution equation arising in option pricing when including transaction costs: a viscosity solution approach. Rev. Bras. Econ. Empresas 12, 81–90 (2012)

    Google Scholar 

  5. Avellaneda, M., Levy, A., Paras, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Fin. 2, 73–88 (1995)

    Article  Google Scholar 

  6. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Nonlinear Parametric Optimization. Birkhäuser Verlag, Basel/Boston, MA (1983)

    MATH  Google Scholar 

  7. Bakstein, D., Howison, S.: A non-arbitrage liquidity model with observable parameters. Working paper, http://eprints.maths.ox.ac.uk/53/

  8. Barles, G., Soner, H.M.: Option Pricing with transaction costs and a nonlinear Black-Scholes equation. Finance Stochast. 2, 369–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsekas, D.P.: Dynamic Programming and Stochastic Control. Academic, New York (1976)

    MATH  Google Scholar 

  10. Bordag, L.A., Frey, R.: Study of the risk-adjusted pricing methodology model with methods of Geometrical Analysis. Stoch. Int. J. Probab. Stoch. Process 83, 333–345 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Company, R., Navarro, E., Pintos, J.R., Ponsoda, E.: Numerical solution of linear and nonlinear Black-Scholes option pricing equations. Comput. Math. Appl. 56, 813–821 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, M.C., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 1, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Düring, B., Fournié, M., Jüngel, A.: High order compact finite difference schemes for a nonlinear Black-Scholes equation. Int. J. Theor. Appl. Finance 7, 767–789 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  15. Frey, R., Patie, P.: Risk management for derivatives in illiquid markets: a simulation study. In: Advances in Finance and Stochastics, pp. 137–159. Springer, Berlin (2002)

    Google Scholar 

  16. Frey, R., Stremme, A.: Market volatility and feedback effects from dynamic hedging. Math. Fin. 4, 351–374 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamala, M., Trnovská, M.: Nonlinear Programming, Theory and Algorithms. Epos, Bratislava (2013)

    MATH  Google Scholar 

  18. Hoggard, T., Whalley, A.E., Wilmott, P.: Hedging option portfolios in the presence of transaction costs. Adv. Futures Opt. Res. 7, 21–35 (1994)

    Google Scholar 

  19. Huang, Y., Forsyth, P.A., Labahn, G.: Combined fixed point and policy iteration for HJB equations in finance. SIAM J. Numer. Anal. 50, 1861–1882 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ishimura, N., Ševčovič, D.: On traveling wave solutions to a Hamilton-Jacobi-Bellman equation with inequality constraints. Jpn. J. Industr. Appl. Math. 30, 51–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ishimura, N., Koleva, M.N., Vulkov, L.G.: Numerical solution via transformation methods of nonlinear models in option pricing. AIP Conf. Proc. 1301, 387–394 (2010)

    Article  MATH  Google Scholar 

  22. Jandačka, M., Ševčovič, D.: On the risk adjusted pricing methodology based valuation of vanilla options and explanation of the volatility smile. J. Appl. Math. 2005, 235–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kilianová, S., Ševčovič, D.: A method of solving Hamilton-Jacobi-Bellman equation for constrained optimal investment problem via Riccati transformation. Anziam J. 55, 14–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kilianová, S., Trnovská, M.: Robust portfolio optimization via solution to the Hamilton-Jacobi-Bellman equation. Int. J. Comput. Math. 93, 725–734 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koleva, M.: Iterative methods for solving nonlinear parabolic problem in pension saving management. AIP Conf. Proc. 1404, 457–463 (2011)

    Article  Google Scholar 

  26. Koleva, M.N., Vulkov, L.G.: Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance. Math. Comput. Model. 57, 2564–2575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kútik, P., Mikula, K.: Finite volume schemes for solving nonlinear partial differential equations in financial mathematics. In: Finite Volumes for Complex Applications VI Problems and Perspectives. Springer Proceedings in Mathematics, vol. 4, pp. 643–651. Springer, Berlin (2011)

    Google Scholar 

  28. Kratka, M.: No mystery behind the smile. Risk 9, 67–71 (1998)

    Google Scholar 

  29. Kwok, Y.K.: Mathematical Models of Financial Derivatives. Springer, New York (1998)

    MATH  Google Scholar 

  30. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type (Translated from the Russian by S. Smith. Translations of Mathematical Monographs), vol. 23. American Mathematical Society, Providence, RI (1968)

    Google Scholar 

  31. Liao, W., Khaliq, A.Q.M.: High-order compact scheme for solving nonlinear Black-Scholes equation with transaction costs. Int. J. Comput. Math. 86, 1009–1023 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Macová, Z., Ševčovič, D.: Weakly nonlinear analysis of the Hamilton-Jacobi-Bellman equation arising from pension saving management. Int. J. Numer. Anal. Model. 4, 619–638 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Mariani, M.C., Ncheuguim, E., Sengupta, I.: Solution to a nonlinear Black-Scholes equation. Electron. J. Differ. Equ. 158, 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preferences. Finance Stochast. 8, 229–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Muthuraman, K., Kumar, S.: Multi-dimensional portfolio optimization with proportional transaction costs. Math Fin. 16, 301–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nayak, S., Papanicolaou, G.: Market influence of portfolio optimizers. Appl. Math. Fin. 15, 21–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peyrl, H., Herzog, F., Geering, H.P.: Numerical solution of the Hamilton-Jacobi-Bellman equation for stochastic optimal control problems. In: WSEAS International Conference on Dynamical Systems and Control, Venice, Italy, 2–4 Nov 2005, pp. 489–497

    Google Scholar 

  38. Ševčovič, D., Stehlíková, B., Mikula, K.: Analytical and Numerical Methods for Pricing Financial Derivatives. Nova Science Publishers, Inc., Hauppauge (2011)

    Google Scholar 

  39. Ševčovič, D., Žitnanská, M.: Analysis of the nonlinear option pricing model under variable transaction costs. Asia-Pacific Finan. Markets 23, 153–174 (2016)

    Article  Google Scholar 

  40. Schönbucher, P., Wilmott, P.: The feedback-effect of hedging in illiquid markets. SIAM J. Appl. Math. 61, 232–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, Q.S.: Convergence of Markov chain approximation on generalized HJB equation and its applications. Automatica 44, 761–766 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tourin, A., Zariphopoulou, T.: Numerical schemes for investment models with singular transactions. Comput. Econ. 4, 287–307 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Witte, J.H., Reisinger, Ch.: Penalty methods for the solution of discrete HJB equations – continuous control and obstacle problems. SIAM J. Numer. Anal. 50, 595–625 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zariphopoulou, T.: Consumption-investment models with constraints. SIAM J. Control. Optim. 1, 59–85 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, S., Han, L., Li, W., Zhang, Y., Han, M.: A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process. Comput. Appl. Math. 34, 881–900 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Union in the FP7-PEOPLE-2012-ITN project STRIKE—Novel Methods in Computational Finance (304617).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ševčovič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ševčovič, D. (2017). Nonlinear Parabolic Equations Arising in Mathematical Finance. In: Ehrhardt, M., Günther, M., ter Maten, E. (eds) Novel Methods in Computational Finance. Mathematics in Industry(), vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-61282-9_1

Download citation

Publish with us

Policies and ethics