Skip to main content

A Virtual Wiretap Channel for Secure Message Transmission

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10311))

Abstract

In the Wyner wiretap channel a sender is connected to a receiver and an eavesdropper through two noisy channels. It has been shown that if the noise in the eavesdropper channel is higher than the receiver’s channel, information theoretically secure communication from Alice to Bob, without requiring a shared key, is possible. The approach is particularly attractive noting the rise of quantum computers and possibility of the complete collapse of todays’ cryptographic infrastructure. If the eavesdropper’s channel is noise free however, no secrecy can be obtained. The iJam protocol, proposed by Gollakota and Katabi, is an interactive protocol over noise free channels that uses friendly jamming by the receiver to establish an information theoretically secure shared key between the sender and the receiver. The protocol relies on the Basic iJam Transmission protocol (BiT protocol) that uses properties of OFDM (Orthogonal Frequency-Division Multiplexing) to create uncertainty for Eve (hence noisy view) in receiving the sent information, and use this uncertainty to construct a secure key agreement protocol. The protocol has been implemented and evaluated using extensive experiments that examines the best eavesdropper’s reception strategy. In this paper we develop an abstract model for BiT protocol as a wiretap channel and refer to it as a virtual wiretap channel. We estimate parameters of this virtual wiretap channel, derive the secrecy capacity of this channel, and design a secure message transmission protocol with provable semantic security using the channel. Our analysis and protocol gives a physical layer security protocol, with provable security, that is implementable in practice (BiT protocol has already been implemented).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 802.1x & WPA settings. https://www.ietf.org/mail-archive/web/ietf/current/msg32026.html

  2. The secure sockets layer (SSL) protocol version 3.0. https://tools.ietf.org/html/rfc6101

  3. SSH protocol architecture. https://www.ietf.org/proceedings/52/I-D/draft-ietf-secsh-architecture-11.txt

  4. Bellare, M., Tessaro, S.: Polynomial-time, semantically-secure encryption achieving the secrecy capacity. arXiv preprint arXiv:1201.3160 (2012)

  5. Bellare, M., Tessaro, S., Vardy, A.: A cryptographic treatment of the wiretap channel. arXiv preprint arXiv: 1201.2205 (2012)

  6. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_18

    Chapter  Google Scholar 

  7. Bergmans, P.: Random coding theorem for broadcast channels with degraded components. IEEE Trans. Inf. Theory 19(2), 197–207 (1973)

    Article  MathSciNet  Google Scholar 

  8. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickerson, K.: Microsoft lab predicts we’ll have a working ‘hybrid’ quantum computer in 10 years, October 2015. http://www.techinsider.io/microsoft-hybrid-quantum-computer-2015-10

  10. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  11. Dong, L., Han, Z., Petropulu, A.P., Poor, H.V.: Cooperative jamming for wireless physical layer security. In: 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 417–420. IEEE (2009)

    Google Scholar 

  12. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  13. Gollakota, S., Katabi, D.: Physical layer wireless security made fast and channel independent. In: 2011 Proceedings IEEE INFOCOM, pp. 1125–1133. IEEE (2011)

    Google Scholar 

  14. Guruswami, V.: Bridging Shannon and Hamming: list error-correction with optimal rate (2010)

    Google Scholar 

  15. Han, Z., Marina, N., Debbah, M., Hjørungnes, A.: Physical layer security game: interaction between source, eavesdropper, and friendly jammer. EURASIP J. Wirel. Commun. Netw. 2009(1), 1 (2010)

    Google Scholar 

  16. Karagiannidis, G.K., Lioumpas, A.S.: An improved approximation for the Gaussian Q-function. IEEE Commun. Lett. 11(8) (2007)

    Google Scholar 

  17. Lai, L., El Gamal, H.: The relay-eavesdropper channel: cooperation for secrecy. IEEE Trans. Inf. Theory 54(9), 4005–4019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leung-Yan-Cheong, S.: On a special class of wiretap channels (Corresp.). IEEE Trans. Inf. Theory 23(5), 625–627 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leung-Yan-Cheong, S., Hellman, M.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24(4), 451–456 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mahdavifar, H., Vardy, A.: Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans. Inf. Theory 57(10), 6428–6443 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muramatsu, J., Miyake, S.: Construction of wiretap channel codes by using sparse matrices. In: 2009 IEEE Information Theory Workshop (2009)

    Google Scholar 

  22. Schulze, H., Lüders, C.: Theory and Applications of OFDM and CDMA: Wideband Wireless Communications. Wiley, Hoboken (2005)

    Book  Google Scholar 

  23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Strasser, M., Danev, B., Čapkun, S.: Detection of reactive jamming in sensor networks. ACM Trans. Sens. Netw. (TOSN) 7(2), 16 (2010)

    Google Scholar 

  25. Tal, I., Vardy, A.: Channel upgrading for semantically-secure encryption on wiretap channels. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1561–1565. IEEE (2013)

    Google Scholar 

  26. Tang, X., Liu, R., Spasojevic, P., Poor, H.V.: The Gaussian wiretap channel with a helping interferer. In: 2008 IEEE International Symposium on Information Theory, pp. 389–393. IEEE (2008)

    Google Scholar 

  27. Tang, X., Liu, R., Spasojevic, P., Poor, H.V.: Interference assisted secret communication. IEEE Trans. Inf. Theory 57(5), 3153–3167 (2011)

    Article  MathSciNet  Google Scholar 

  28. Tekin, E., Yener, A.: Achievable rates for the general Gaussian multiple access wire-tap channel with collective secrecy. arXiv preprint cs/0612084 (2006)

  29. Tekin, E., Yener, A.: The Gaussian multiple access wire-tap channel: wireless secrecy and cooperative jamming. In: 2007 Information Theory and Applications Workshop, pp. 404–413. IEEE (2007)

    Google Scholar 

  30. Tekin, E., Yener, A.: The general Gaussian multiple-access and two-way wiretap channels: achievable rates and cooperative jamming. IEEE Trans. Inf. Theory 54(6), 2735–2751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.: Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory 53(8), 2933–2945 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  33. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setareh Sharifian .

Editor information

Editors and Affiliations

Appendices

Appendix A: Achievable Transmission Rate Using BiT\(^N_{q,\eta }\)

For a noise free main channel, the secrecy capacity of BiT\(^N_{q,\eta }\) is given by:

$$ C_s(\text {BiT}_{\eta ,q}^N)=-\{\eta \log \eta +(1-\eta )\log \frac{1-\eta }{(2^{Nq}-1)}\}. $$

Figure 4 shows the rate of communication when, the information block length is Nq bits, \(q=2,3\) and 4, and \(N=64\). The graphs show the achievable rates for \(\sigma =128\) semantic security, and \(\eta =0.2\) (upper graph) and \(\eta =0.4\) (lower graph). The figures show that the achievable secrecy rate and secrecy capacity decreases as \(\eta \) grows. This is expected because higher \(\eta \) means that the adversary has a better chance of correctly decoding the jammed signal.

Fig. 4.
figure 4

The secrecy rate and capacity (bits per channel use) for \(N=64\) and different values of q for \(\eta =0.2\) (upper graph) and \(\eta =0.4\) (lower graph).

Appendix B: BiT over Noisy Receiver Channel—An Example

In this section we derive a sufficient relation between \(P_b\) and \(\eta \) so that the virtual wiretap channel is a stochastically degraded broadcast channel. Following Sect. 3, the transition matrix of the virtual wiretapper channel W for \(q=2\) is given by:

$$\mathbf {P}_{\mathsf {W}}= \begin{bmatrix} \eta&\frac{1-\eta }{3}&\frac{1-\eta }{3}&\frac{1-\eta }{3} \\ \frac{1-\eta }{3}&\eta&\frac{1-\eta }{3}&\frac{1-\eta }{3} \\ \frac{1-\eta }{3}&\frac{1-\eta }{3}&\eta&\frac{1-\eta }{3} \\ \frac{1-\eta }{3}&\frac{1-\eta }{3}&\frac{1-\eta }{3}&\eta \end{bmatrix}, $$

where \(u=\frac{1-\eta }{3}\), and \(v=\eta -\frac{1-\eta }{3}=\frac{4\eta -1}{3}\). Note that the sum of each row is \(4u+v=1\). On the other hand, we can compute:

$$ \begin{array}{ll} \mathbf {P}_{\mathsf {M}}^{-1} &{}= \frac{1}{(1-2P_b)^2}\cdot \\ &{}\ \ \begin{pmatrix} (1-P_b)(1-P_b) &{} -P_b(1-P_b) &{} -P_b(1-P_b) &{} P_b^2 \\ -P_b(1-P_b) &{} (1-P_b)(1-P_b) &{} P_b^2 &{} -P_b(1-P_b) \\ -P_b(1-P_b) &{} P_b^2 &{} (1-P_b)(1-P_b) &{} -P_b(1-P_b) \\ P_b^2 &{} -P_b(1-P_b) &{}-P_b(1-P_b)&{} (1-P_b)(1-P_b) \end{pmatrix}. \end{array} $$

Let \(a=1-P_b\) and \(b=P_b\). The above matrix can be written as:

$$\mathbf {P}_{\mathsf {M}}^{-1} = \frac{1}{(a-b)^2}\cdot \begin{pmatrix} a^2 &{} -ab &{} -ab &{} b^2 \\ -ab &{} a^2 &{} b^2 &{} -ab \\ -ab &{} b^2 &{} a^2 &{} -ab \\ b^2 &{} -ab &{}-ab&{} a^2 \end{pmatrix}. $$

The sum of entries of each row is given by, \(\frac{1}{(a-b)^2}(a^2-2ab+b^2)=1\). The following is used to prove the required relation.

Lemma 1

Let there be two matrices

$$ A= \begin{bmatrix} a_{11}&a_{12}&\dots&a_{1n} \\ a_{21}&a_{22}&\dots&a_{2n} \\ \vdots&\vdots&\vdots \\ a_{n1}&a_{n2}&\dots&a_{nn} \end{bmatrix}, B= \begin{bmatrix} b_{11}&b_{12}&\dots&b_{1n} \\ b_{21}&b_{22}&\dots&b_{2n} \\ \vdots&\vdots&\vdots \\ b_{n1}&b_{n2}&\dots&b_{nn} \end{bmatrix}. $$

If \(\sum _{j=1}^n a_{ij}=1\) and \(\sum _{j=1}^n b_{ij}=1\) for any \(i\in [n]\), then \(\sum _{j=1}^n (AB)_{ij}=1\), for any \(i\in [n]\).

Proof

For any \(i\in [n]\),

$$ \begin{array}{ll} \sum _{j=1}^n (AB)_{ij}&{}=\sum _{j=1}^n \left( \sum _{k=1}^n a_{ik}b_{kj} \right) \\ &{}=\sum _{k=1}^n a_{ik}\cdot \left( \sum _{j=1}^n b_{kj} \right) \\ &{}=\sum _{k=1}^n a_{ik}\\ &{}=1. \end{array} $$

   \(\square \)

Lemma 2

The virtual wiretap channel is a stochastically degraded broadcast channel if \(P_b\le \frac{1-\sqrt{\frac{4\eta -1}{3}}}{2}\) and \(\eta >\frac{1}{4}\).

Proof

The virtual wiretap channel is a stochastically degraded broadcast channel if there exists a matrix \(\mathbf {R}\) such that \(\mathbf {P}_{\mathsf {W}}=\mathbf {P}_{\mathsf {M}}\times \mathbf {R}\), and \(\mathbf {R}\) is a channel transition matrix; that is, has non-negative entries and each row sums to 1. Using the matrices \(\mathbf {P}_{\mathsf {M}}\) and \(\mathbf {P}_{\mathsf {W}}\) above, we have:

$$ \begin{array}{ll} \mathbf {R}&{}=\mathbf {P}_{\mathsf {W}}\times \mathbf {P}_{\mathsf {M}}^{-1}\\ &{}=\frac{1}{(a-b)^2}\begin{bmatrix} u(a-b)^2+va^2\ &{} u(a-b)^2-vab\ &{} u(a-b)^2-vab\ &{} u(a-b)^2+vb^2 \\ u(a-b)^2-vab &{} u(a-b)^2+va^2 &{} u(a-b)^2+vb^2 &{} u(a-b)^2-vab \\ u(a-b)^2-vab &{} u(a-b)^2+vb^2 &{} u(a-b)^2+va^2 &{} u(a-b)^2-vab \\ u(a-b)^2+vb^2 &{} u(a-b)^2-vab &{} u(a-b)^2-vab &{} u(a-b)^2+va^2 \\ \end{bmatrix}. \end{array} $$

Using Lemma 1, entries in each row of \(\mathbf {R}\) sum to 1.

To ensure entries of \(\mathbf {R}\) are all non-negative, we first note that \(u(a-b)^2+va^2> 0\) and \(u(a-b)^2+vb^2>0\). So the virtual wiretap channel is a stochastically degraded broadcast channel if \(u(a-b)^2-vab\ge 0\) and so:

$$ \begin{array}{ll} u(a-b)^2-vab\ge 0 &{}\Leftrightarrow ua^2+ub^2-(2u+v)ab\ge 0\\ &{}\Leftrightarrow ua^2+ub^2-(2u+1-4u)ab\ge 0\\ &{}\Leftrightarrow ua^2+ub^2-(1-2u)ab\ge 0\\ &{}\Leftrightarrow u(a+b)^2-ab\ge 0\\ &{}\Leftrightarrow u-ab\ge 0\\ &{}\Leftrightarrow P_b^2-P_b+u\ge 0,\\ \end{array} $$

where \(4u+v=1\) and \(a+b=1\) are repeatedly invoked to simplify the expressions. The solution to the above inequality depends on the determinant \(1-4u\). When \(1-4u>0\), we have

$$ \begin{array}{ll} P_b^2-P_b+u\ge 0&{}\Leftrightarrow \left( P_b-\frac{1-\sqrt{1-4u}}{2}\right) \left( P_b-\frac{1+\sqrt{1-4u}}{2}\right) \ge 0\\ &{}\Leftrightarrow \left( P_b-\frac{1-\sqrt{v}}{2}\right) \left( P_b-\frac{1+\sqrt{v}}{2}\right) \ge 0\\ &{}\Leftrightarrow \left( P_b-\frac{1-\sqrt{\frac{4\eta -1}{3}}}{2}\right) \left( P_b-\frac{1+\sqrt{\frac{4\eta -1}{3}}}{2}\right) \ge 0\\ &{}\Leftrightarrow P_b\le \frac{1-\sqrt{\frac{4\eta -1}{3}}}{2} \text {or}\; P_b\ge \frac{1+\sqrt{\frac{4\eta -1}{3}}}{2}. \end{array} $$

By assumption, \(P_b\in [0,\frac{1}{2}]\) and so \(P_b\le \frac{1-\sqrt{\frac{4\eta -1}{3}}}{2} = \frac{1}{2} - \sqrt{\frac{4\eta -1}{12}}\).    \(\square \)

Example 2

Let \(P_b=0.1\) and Let \(\eta =0.55\). Therefore,

$$ \mathbf {P}_{\mathsf {M}}= \begin{bmatrix} 0.81&0.09&0.09&0.01 \\ 0.09&0.81&0.01&0.09 \\ 0.09&0.01&0.81&0.09 \\ 0.01&0.09&0.09&0.81 \end{bmatrix} $$

and

$$ \mathbf {P}_{\mathsf {W}}= \begin{bmatrix} 0.55&0.15&0.15&0.15 \\ 0.15&0.55&0.15&0.15 \\ 0.15&0.15&0.55&0.15 \\ 0.15&0.15&0.15&0.55 \end{bmatrix}. $$

Therefore

$$ \mathbf {R}= \mathbf {P}_{\mathsf {W}}\times \mathbf {P}_{\mathsf {M}}^{-1}= \begin{bmatrix} 0.66&0.094&0.094&0.156 \\ 0.094&0.66&0.156&0.094 \\ 0.094&0.156&0.66&0.094 \\ 0.156&0.094&0.094&0.66 \end{bmatrix}. $$

\(\mathbf {R}\) is the transition probability matrix of a virtual channel that confirms \(\mathbf {P}_{\mathsf {W}}\) is degraded with respect to \(\mathbf {P}_{\mathsf {M}}\). The secrecy capacity in this example is

$$\begin{aligned} C_s =C_{\mathsf {M}}-C_{\mathsf {W}}=(2-0.7624)-(2-1.1515)=0.3891. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sharifian, S., Safavi-Naini, R., Lin, F. (2017). A Virtual Wiretap Channel for Secure Message Transmission. In: Phan, RW., Yung, M. (eds) Paradigms in Cryptology – Mycrypt 2016. Malicious and Exploratory Cryptology. Mycrypt 2016. Lecture Notes in Computer Science(), vol 10311. Springer, Cham. https://doi.org/10.1007/978-3-319-61273-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61273-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61272-0

  • Online ISBN: 978-3-319-61273-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics