Skip to main content

Simulation-Based Engineering

  • Chapter
  • First Online:
Guide to Simulation-Based Disciplines

Abstract

Engineers, mathematicians, and scientists were always interested in numerical solutions of real-world problems. The ultimate objective within nearly all engineering projects is to reach a functional design without violating any of the performance, cost, time, and safety constraints while optimizing the design with respect to one of these metrics. A good mathematical model is at the heart of each powerful engineering simulation being a key component in the design process. In this chapter, we review role of simulation in the engineering process, the historical developments of different approaches, in particular simulation of machinery and continuum problems which refers basically to the numerical solution of a set of differential equations with different initial/boundary conditions. Then, an overview of well-known methods to conduct continuum based simulations within solid mechanics, fluid mechanics and electromagnetic is given. These methods include FEM, FDM, FVM, BEM, and meshless methods. Also, a summary of multi-scale and multi-physics-based approaches are given with various examples. With constantly increasing demands of the modern age challenging the engineering development process, the future of simulations in the field hold great promise possibly with the inclusion of topics from other emerging fields. As technology matures and the quest for multi-functional systems with much higher performance increases, the complexity of problems that demand numerical methods also increases. As a result, large-scale effective computing continues to evolve allowing for efficient and practical performance evaluation and novel designs, hence the enhancement of our thorough understanding of the physics within highly complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashby, M. F. (1996). Modelling of materials problems. Journal of Computer-Aided Materials Design, 3(1–3), 95–99.

    Google Scholar 

  • Automotive Suspension - MATLAB & Simulink Example. (n.d.). Retrieved February 15, 2017, from https://www.mathworks.com/help/simulink/examples/automotive-suspension.html?requestedDomain=www.mathworks.com.

  • Bathe, K.-J. (2006). Finite element procedures. Klaus-Jurgen Bathe.

    Google Scholar 

  • Bensoussan, A., Lions, J.-L., & Papanicolaou, G. (1978). Asymptotic analysis for periodic structures (Vol. 5). North-Holland Publishing Company Amsterdam.

    Google Scholar 

  • Cakmakci, M., & Ulsoy, A. G. (2009). Improving Component-Swapping Modularity Using Bidirectional Communication in Networked Control Systems. IEEE/ASME Transactions on Mechatronics, 14(3), 307–316. http://doi.org/10.1109/TMECH.2008.2011898

  • Cakmakci, M., Li, Y., & Liu, S. (2011). Model-in-the-loop Development for a Fuel Cell Vehicle. In Proceedings of the American Control Conference (pp. 2462–2467).

    Google Scholar 

  • Chen, C.-T. (1995). Linear system theory and design. Oxford University Press, Inc.

    Google Scholar 

  • Chew, W. C. (1995). Waves and Fields in Inhomogeneous Media (Vol. 522). New York: IEEE Press.

    Google Scholar 

  • Chew, W. C., Michielssen, E., Song, J. M., & Jin, J.-M. (2001). Fast and efficient algorithms in computational electromagnetics. Artech House, Inc.

    Google Scholar 

  • Dhatt, G., Lefrançois, E., & Touzot, G. (2012). Finite element method. John Wiley & Sons.

    Google Scholar 

  • Dokuyucu, H. I. H. I., & Cakmakci, M. (2016). Concurrent Design of Energy Management and Vehicle Traction Supervisory Control Algorithms for Parallel Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 65(2), 555–565. http://doi.org/10.1109/TVT.2015.2405347.

  • El-Kahlout, Y., & Kiziltas, G. (2011). Inverse synthesis of electromagnetic materials using homogenization based topology optimization. Progress In Electromagnetics Research, 115, 343–380. doi:10.2528/PIER10081603 http://www.jpier.org/pier/pier.php?paper=10081603.

  • Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2009). Feedback Control of Dynamic Systems (6th ed.). Prentice Hall. Retrieved from http://www.amazon.com/dp/0136019692.

  • Fung, Y.-C. (1965). Foundations of solid mechanics. Prentice Hall.

    Google Scholar 

  • Gurel, L., & Ergul, O. (2007). Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns. Electronics Letters, 43(9), 499–500.

    Google Scholar 

  • Harrington, R. F. (2001). Time-Harmonic Electromagnetic Fields. New York. IEEE Press.

    Google Scholar 

  • Jategaonkar, R. V, Fischenberg, D., & Gruenhagen, W. (2004). Aerodynamic modeling and system identification from flight data-recent applications at dlr. Journal of Aircraft, 41(4), 681–691.

    Google Scholar 

  • Kamadan, A. (2016). Development of Co-design frameworks for optimal variable compliant actuation. Sabanci University.

    Google Scholar 

  • Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2000). System Dynamics- Modeling and Simulation of Dynamic Systems (Third Edit). Wiley-Interscience.

    Google Scholar 

  • Kazachkov, I. V, & Kalion, V. A. (2002). Numerical Continuum Mechanics. Lecture notes. KTH.

    Google Scholar 

  • Khurmi, R. S., & Gupta, J. K. (1976). Theory of machines. Eurasia.

    Google Scholar 

  • Kiziltas, G., Psychoudakis, D., Volakis, J. L., & Kikuchi, N. (2003). Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna. IEEE Transactions on Antennas and Propagation, 51(10), 2732–2743.

    Google Scholar 

  • Lian, F., Moyne, J., & Tilbury, D. (2002). Network Design Consideration for Distributed Control Systems. IEEE Transactions on Control Systems Technology, 10(2), 297–307.

    Google Scholar 

  • Malvern, L. E. (1969). Introduction to the Mechanics of a Continuous Medium.

    Google Scholar 

  • Martins, J. R. R. A., & Lambe, A. B. (2013). Multidisciplinary Design Optimization: A Survey of Architectures. AIAA Journal, 51(9), 2049–2075. http://doi.org/10.2514/1.J051895.

  • Milton, G. W. (2002). The theory of composites (Cambridge monographs on applied and computational mathematics).

    Google Scholar 

  • Muntean, A. (2015). Continuum Modeling: An Approach Through Pratical Examples. Springer.

    Google Scholar 

  • Ogata, K. (1990). Modern Control Engineering. Prentice Hall.

    Google Scholar 

  • Ogata, K. (1995). Discrete-Time Control Systems (2nd ed.). Prentice Hall. Retrieved from http://www.amazon.com/dp/0130342815.

  • Patil, R., Filipi, Z., & Fathy, H. (2010). Computationally Efficient Combined Design and Control Optimization using a Coupling Measure. IFAC Proceedings Volumes, 43(18), 144–151. http://doi.org/10.3182/20100913-3-US-2015.00126.

  • Rajamani, R., Choi, S. B., Law, B. K., Hedrick, J. K., Prohaska, R., & Kretz, P. (2000). Design and Experimental Implementation of Longitudinal Control for a Platoon of Automated Vehicles. Journal of Dynamic Systems, Measurement, and Control, 122(3), 470–476. http://doi.org/10.1115/1.1286682.

  • Rajamani, R., & Hedrick, J. K. (1995). Adaptive observers for active automotive suspensions: theory and experiment. IEEE Transactions on Control Systems Technology, 3(1), 86–93. http://doi.org/10.1109/87.370713.

  • Ristevski, S., & Cakmakci, M. (2015). Mechanical design and position control of a modular mechatronic device (MechaCell). In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (Vol. 2015–Augus, pp. 725–730). IEEE. http://doi.org/10.1109/AIM.2015.7222623.

  • Schetz, J. A., & Fuhs, A. E. (2013). Fundamentals of fluid mechanics. John Wiley & Sons.

    Google Scholar 

  • Sokolowski, J. A., & Banks, C. M. (2010). Modeling and simulation fundamentals: theoretical underpinnings and practical domains. John Wiley & Sons.

    Google Scholar 

  • Topçu, O., Durak, U., OÄŸuztüzün, H., & Yilmaz, L. (2016). Distributed Simulation. Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-03050-0.

  • Tureyen, E. B., Karpat, Y., & Cakmakci, M. (2016). Development of an iterative learning controller for polymer based micro-stereolithography prototyping systems. In 2016 American Control Conference (ACC) (pp. 852–857). IEEE. http://doi.org/10.1109/ACC.2016.7525020

  • Ulsoy, A. G., Peng, H., & Çakmakci, M. (2012). Automotive Control Systems [Hardcover]. Cambridge University Press. Retrieved from http://www.amazon.com/Automotive-Control-Systems-Galip-Ulsoy/dp/110701011X.

  • Volakis, J. L., Mumcu, G., Sertel, K., Chen, C.-C., Lee, M., Kramer, B., … Kiziltas, G. (2006). Antenna miniaturization using magnetic-photonic and degenerate band-edge crystals. IEEE Antennas and Propagation Magazine, 48(5).

    Google Scholar 

  • Walsh, G. C., Ye, H., & Bushnell, L. (2002). Stability Analysis of Networked Control Systems. IEEE Transactions on Control Systems Technology, 10(3), 438–446.

    Google Scholar 

  • Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 129(4), 370–380.

    Google Scholar 

  • Widder, D. V. (1976). The heat equation (Vol. 67). Academic Press.

    Google Scholar 

  • World-Record Algorithm from Jülich Calculates Over Three Trillion Particles - Research in Germany. (2011). Retrieved February 15, 2017, from http://www.research-in-germany.org/en/research-landscape/news/news-archive/2011/08/2011-08-02-world-record-algorithm-from-j-lich-calculates-over-three-trillion-particles.html.

  • Zienkiewicz, O. C., & Taylor, R. L. (2005). The finite element method for solid and structural mechanics. Butterworth-heinemann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melih Cakmakci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cakmakci, M., Kiziltas Sendur, G., Durak, U. (2017). Simulation-Based Engineering. In: Mittal, S., Durak, U., Ören, T. (eds) Guide to Simulation-Based Disciplines. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-61264-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61264-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61263-8

  • Online ISBN: 978-3-319-61264-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics