Skip to main content

A Case Study in Reuben Hersh’s Philosophy: Bézout’s Theorem

  • Chapter
  • First Online:
Book cover Humanizing Mathematics and its Philosophy

Abstract

I met Reuben Hersh, in person, in 1989. However, I knew of him well before that. I had a read on The Mathematical Experience ([11] 1981), a book he had coauthored with Philip Davis that won the National Book Award in 1983. Written for a general audience, this book sought to promote an understanding of mathematics from historical, philosophical, and psychological perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Annotated References

  1. Bézout, E. 1779. Théorie générale des equations algébriques. Paris.

    Google Scholar 

  2. ____1764. Recherches sur le degré des équations résultantes de l’évanouissement des inconnues, et sur les moyens qu’il convient d’employer pour trouver ces équations, Histoire de académie royale des sciences. Paris: 288–388. https://www.bibnum.education.fr/mathematiques/algebre/Bézout-et-les-intersections-de-courbes-algebriques

  3. Bostrom, N. 2014. Superintelligence: paths, dangers, strategies. Oxford: Oxford University Press.

    Google Scholar 

  4. Cayley, A. 1863. On skew surfaces otherwise scrolls. Philosophical Transactions 153: 453–483. Reprinted in The collected mathematical papers of Arthur Cayley, Sc. D., F. R. S. Cambridge: University Press (1889–1898): vol. 5, #339, 168–200. http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABS3153. Cayley investigated skew surfaces generated by a line which meets a given curve or curves, using 276] “a new method” of establishing, in general, that mn is the number of points common to a surface of the m th order and a curve of the n th order ([60], 276).

  5. Chasles, M. 1875. Application du principe de correspondance analytique à la démonstration du theorème de Bézout. Comptes Rendus des Séances de l’Académie des Sciences 81. See [37].

    Google Scholar 

  6. ___1872. Détermination immediate, par le principe de correspondance, du nombre des points d’intersection de deux courbes d’ordre quelconque, qui se trouvent à distance finie. Comptes Rendus des Séances de l’Académie des Sciences 75(14). September: 736–744. http://sites.mathdoc.fr/JMPA/PDF/JMPA_1873_2_18_A15_0.pdf Cited in [40]. Chasles gave the first synthetic proof of what he called “Euler’s theorem” in the plane. But he also observed that the “merit of the work of Bézout was the treatment of the question its generality.”

  7. ___ 1864. Considérations sur la méthode générale exposée dans la séance de 15 février. – Différences entre cette method et la méthode analytique. Procédés généraux de démonstration. Comptes Rendus des Séances de l'Académie des Sciences 58: 1167–1175. http://babel.hathitrust.org/cgi/pt?id=mdp.39015032334222;view=1up;seq=1181 Chasles proved that a rational correspondence F(x,y) of degree m in x and n in y between spaces or loci in spaces gives the general case m + n correspondences. In [41], Pieri extended this principle.

  8. ___1855. Principe de correspondance entre deux objets variables, qui peut étre d’un grand usage en Geometrie.Comptes Rendus des Séances del’Académiedes Sciences 41(26).December: 1097–1107. Chasles demonstrates the principle for two special cases of elementary forms of the first species. Fulton [19] indicated that this correspondence principle of Chasles:::.was one of the primary tools of classical enumerative geometry. Fulton also cited [7]. See [38], [40], [41].

    Google Scholar 

  9. Cook, G. 2015. The singular mind of Terry Tao. New York Times Sunday Magazine 07-26-2015.

    Google Scholar 

  10. Cramer, G. 1750. Introduction à analyse des lignes courbes algébriques. Geneva: Cramer and Cl.Phibert.

    Google Scholar 

  11. Davis, P. and R. Hersh. 1981. The mathematical experience. Boston: Birkhäuser.

    MATH  Google Scholar 

  12. ___ and E.A. Marchisotto. 2012. The mathematical experience study edition. Boston: Birkhäuser.

    Google Scholar 

  13. Descartes, R. 1637. La géométrie . Appendix to Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences. The Netherlands: Leiden. http://www.gutenberg.org/ebooks/26400

  14. Dieudonné, J. 1985. The history of algebraic geometry. California: Wadsworth. Originally published in 1974 as Cours de géométrie algébrique I. Presses Universitaires de France. In Chapter VII, note 3, the author described Poncelet’s proof of Bézout’s theorem

    Google Scholar 

  15. Euler, L. 1764. Nouvelle méthode d'éliminer les quantités inconnues des équations Mémoires de l’Académie de Berlin 20: 197-211. The question of finding the degree of the equation for the common points satisfying two simultaneous equations, was solved independently by Euler and Bézout.[…] Both depended upon the formal structure of what were later named determinants ([56], 327).

    Google Scholar 

  16. ___1748. Démonstration sur le nombre des points où deux lignes des orders quelconques peuvent se couper. Mémoires de l’Académie de Berlin: 233–248.

    Google Scholar 

  17. Ford, M. 2016. Rise of robots: technology and the threat of a jobless future. Basic Books, Reprint Edition.

    Google Scholar 

  18. Fouret, G.1872-1873. Sur l'application du principe de correspondance à la détermination du nombre des points d’intersection de trois surfaces ou d’une courbe gauche et d'une surface. Bulletin de la Societé Mathématique 1. July 1873: 258–259. http://archive.numdam.org/ARCHIVE/BSMF/BSMF_1872-1873__1_/BSMF_1872-1873__1__258_1/BSMF_1872-1873__1__258_1.pdf

  19. Fulton, W. 1984. Intersection theory. New York: Springer-Verlag. See [28].

    Google Scholar 

  20. Halphen, G.H. 1873–1874. Recherches de géometrie à n dimensions. Bulletin de la Societé Mathématique di France 2. June: 34-52. In [40], Pieri cited this article for Halphen’s analytic proof of Bézout’s theorem. M. Nöther [36] corrected errors in Halphen’s proof. http://www.numdam.org/item?id=BSMF_1873-1874__2__34_0

  21. Hersh, R. 2014. Experiencing mathematics. What do we do, when we do mathematics? American Mathematic Society. Edward Dunne Interview: http://www.ams.org/publications/authors/books/postpub/mbk-83

  22. ___2011. Alvin White, a man of courage. Journal of Humanist Mathematics.1 July: 56–60. http://scholarship.claremont.edu/jhm/vol1/iss2/6

  23. ___1997. What is mathematics, really? New York: Oxford University Press.

    Google Scholar 

  24. ___1997. What kind of thing is a number?: A talk with Reuben Hersh, interview by John Brockman. Humanistic Mathematics Network Journal. 15: http://scholarship.claremont.edu/hmnj/vol1/iss15/3

  25. ___1990. Let’s teach philosophy of Mathematics. College Mathematics Journal 21(2). March: 105–111.

    Google Scholar 

  26. Huber, M. and G. Karaali. Editors. The Journal of Humanistic Mathematics. http://scholarship.claremont.edu/jhm

  27. Kleiman, S.L. 1987. Intersection theory and enumerative geometry: a decade in review. Proceedings of Symposia in Pure Mathematics 46, American Mathematical Society: 321–370.

    Google Scholar 

  28. ___1985. Review of Intersection theory, and Introduction to intersection theory in algebraic geometry by William Fulton. Bulletin of the American Mathematical Society, 12(1): 137–143. In 1864 Chasles gave the first theory of enumerative geometry. The work of Hermann Schubert) grew out of this. A revolutionary change in intersection theory took place in 1879 with the appearance of Schubert’s book, “Kalkïil der abzàhlenden Geometrie” []. Schubert based his work on the two great 19th century principles of geometry, the Chasles correspondence principle and the principle of conservation of number [] Today the term “Schubert calculus”[] is used simply to honor Schubert's solution in 1885–1886 of the problem of characteristics for linear spaces of arbitrary dimension. […] Complemented by the work on the multiplicative structure of the intersection ring done by Schubert himself, Pieri in 1893–1895, and Giambelli in 1903, this work has been particularly significant ….

    Google Scholar 

  29. ___1980. Chasles’s enumerative theory of conics. In Studies in Algebraic Geometry. MAA Studies in Mathematics Volume 20. Edited by A. Seidenberg. Mathematical Association of America: 117–138.

    Google Scholar 

  30. ___1976a. The enumerative theory of singularities. In Real and complex singularities, Oslo 1976. (P. Holm, Ed.): 298–396.

    Google Scholar 

  31. ___1976b. Problem 15: Rigorous foundations of Schubert’s enumerative calculus. Proceedings of Symposia in Pure Mathematics 28. American Mathematical Society: 445–482.

    Google Scholar 

  32. Macaulay, F.S. 1916. Algebraic theory of modular systems. Cambridge Tracts Math., Cambridge University Press.

    MATH  Google Scholar 

  33. Maclaurin, C. 1720. Geometria organica. London. Intersection theory, a basic component of algebraic geometry, was founded in 1720 by Colin Maclaurin, 93 years after Descartes promoted the use of coordinates and equations. See [28].

    Google Scholar 

  34. Marchisotto, E.A. 1999. Anneli Lax: In memoriam. Humanistic Mathematics Network Journal 21: http://scholarship.claremont.edu/hmnj/vol1/iss21/3

  35. ___ and J. T. Smith. 2007. The legacy of Mario Pieri in geometry and arithmetic. Boston: Birkhäuser.

    Google Scholar 

  36. Nöther, M. 1877. Zur Eliminationstheorie. Mathematische Annalan 11: 571–574. Nöther gave a simpler, more rigorous analytic proof of Bézout’s theorem than Halphen [20]. http://resolver.sub.uni-goettingen.de/purl?PPN235181684_0011/dmdlog32

  37. Pieri, M. 1897a. Sull’ordine della varietà generata di più sistemi lineari omografici. Rendiconti del Circolo Matematico di Palermo 11: 58–63. Cited in [35] as [Pieri 1897d]. Pieri used Bézout’s theorem and his coincidence formula of [39] to prove that the geometric locus is a variety of dimension n – k + i (0 ≤ n –k+i ≤ n) of order equal to the sum of the algebraically distinct products obtained by multiplying the various orders n 1 , n 2 ,…,n k of the given systems taken (k- i) times in all the [k!/i!(k – i)!] possible ways; and of order 1 if i = k.. See [5].

    Google Scholar 

  38. ___ 1891a. A proposito della nota del sig. Rindi “Sulle normali comuni a due superficie. Rendiconti del Circolo Matematico di Palermo 5: 323. Pieri demonstrated that this result, as proved also by Fouret can be considered as special case of a general formula that he gave using Chasles’s principle of correspondence.

    Google Scholar 

  39. ___ 1891b. Formule di coincidenza per le serie algebriche di coppie di punti dello spazio a n dimension. Rendiconti del Circolo Matematico di Palermo 5: 252–268. Pieri’s formula enumerates the virtual number of fixed points of a correspondence on an n-dimensional projective space P n when the fixed-point locus is infinite. It is a higher dimensional analogue of fixed-point formulas found by Chasles for P 1 , Zeuthen for P 2 , Schubert for P 3 . Pieri noted that the results he obtained were derived by the principle of correspondence of Chasles, using projection and section, and Schubert’s principle of conservation of number.

    Google Scholar 

  40. ___1888. Sopra un teorema di geometria ad n dimensioni. Giornale di Matematiche di Battaglini 26: 241–254. https://archive.org/details/giornaledimatem09unkngoog Cited in [35] as [Pieri 1888].

  41. ___ 1887 Sul principio di corrispondenza in uno spazio lineare qualunque ad n dimensioni Atti della Reale Accademia dei Lincei: Rendiconti (series 4) 3, 1887: 196–199. LC: AS222.A23. JFM: 19. 0668.02. Cited in [35] as [Pieri 1887b].

    Google Scholar 

  42. Poncelet, J. 1822. Applications d’analyse et de géométrie, qui ont servi, en 1822, de principal fondement au « Traité des propriétés projectives des figures », 2 vol. Mallet-Bachelier puis Gauthier-Villars, Paris, 1862–1864.

    Google Scholar 

  43. Salmon, G. 1882. A treatise on the analytic geometry of three dimensions. Fourth Edition. Dublin: Hodges, Figgis & Co. First Edition 1865, Second Edition 1869. In [41], Pieri cited page 511 of the second edition for Salmon’s extension of the principle of correspondence.

    Google Scholar 

  44. Salmon, G. 1866. Lessons introductory to the modern higher algebra. Second Edition. Dublin: Hodges, Smith& Co. First Edition, 1859.

    Google Scholar 

  45. Segre, C. 1912. Mehrdimensionale Räume. Encyklopadie der Mathematischen Wissenschaften Band III Tiel 2 hft 7.

    Google Scholar 

  46. Severi, F. 1912. Sul principio della conservazione del numero. Rendiconti del Circolo matematico di Palermo 33: 313–327.

    Article  MATH  Google Scholar 

  47. Smith, J.T. 2017 Personal conversation.

    Google Scholar 

  48. Turing, A. 1951. Can digital computers think? Typescript with American Mathematical Society annotations of a talk broadcast on BBC Third Programme. May. The Turing Digital Archive. http://www.turingarchive.org/browse.php/b/5

    Google Scholar 

  49. Usiskin, Z, A. Peressini, E. Marchisotto, and D. Stanley. 2003 Mathematics for high school teachers, an advanced perspective. Upper Saddle River: Prentice Hall.

    Google Scholar 

  50. Van der Waerden, B. L. 1928. Eine verallgemeinerung des Bézoutschen theorems. Mathematische Annalen 99: 497-541, and 100: 752.

    Google Scholar 

  51. ___ 1927. Der multiplizitätsbegriff der algebraischen Geometrie. Mathematische Annalen 97: 756–774.

    Article  MATH  MathSciNet  Google Scholar 

  52. Vogel W. 1984. Lectures on results on Bezout’s theorem, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 74, Berlin: Springer.

    Google Scholar 

  53. Weil, A. 1944. Foundations of algebraic geometry. American Mathematical Society Colloquium Publications, volume 29, 1st edition. (2nd edition, 1962).

    Google Scholar 

  54. White, A. M. 1975. Beyond behavioral objectives. American Mathematical Monthly 82(.8), October: 849–851.

    Google Scholar 

  55. ___1993. Essays in Humanist Mathematics: Mathematical Association of America (MAA) Notes Series.

    Google Scholar 

  56. White, H. S. 1909. Bézout's theory of resultants and its influence on geometry. Bulletin of the American Mathematics Society 15(6): 325–338. http://www.ams.org/journals/bull/1909-15-07/S0002-9904-1909-01773-2/S0002-9904-1909-01773-2.pdf

    Article  MATH  Google Scholar 

  57. Zeuthen, H.G.1914. Lehrbuch der abzählenden Methoden der Geometrie. Leipzig: Teubner.

    MATH  Google Scholar 

  58. ___ 1874. Sur les principes de correspondance du plan et de l’espace. Comptes Rendus des Séances de l’Académie des Sciences 78(22). June: 1553–1556.

    Google Scholar 

  59. ___.1873. Note sur les principes de correspondance. Bulletin des Sciences Mathématique 5: 186–190.

    Google Scholar 

  60. ___ and M. Pieri. 1915. (1991). Méthodes énumeratives by H. G. Zeuthen. In Molk and Meyer [1911–1915] 1991 (fascicule 2): 260–331. Translation and revision of Zeuthen 1905]. Cited in[35] as [Pieri editor and translator 1915 (1991)] .

    Google Scholar 

Download references

Acknowledgments

I thank Christopher Diorio, Paul Hoffmann III, Beverly Kleiman, and Michelle Marchisotto for conversations with them that gave me insights into directions to pursue this article. I am deeply grateful to Steven L. Kleiman for the gift of his time and expertise in enriching my mathematical thoughts about this topic and as always to James T. Smith for his insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Anne Corie Marchisotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marchisotto, E.A.C. (2017). A Case Study in Reuben Hersh’s Philosophy: Bézout’s Theorem. In: Sriraman, B. (eds) Humanizing Mathematics and its Philosophy. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-61231-7_23

Download citation

Publish with us

Policies and ethics