Forward-Secure Searchable Encryption on Labeled Bipartite Graphs

  • Russell W. F. LaiEmail author
  • Sherman S. M. Chow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10355)


Forward privacy is a trending security notion of dynamic searchable symmetric encryption (DSSE). It guarantees the privacy of newly added data against the server who has knowledge of previous queries. The notion was very recently formalized by Bost (CCS ’16) independently, yet the definition given is imprecise to capture how forward secure a scheme is. We further the study of forward privacy by proposing a generalized definition parametrized by a set of updates and restrictions on them. We then construct two forward private DSSE schemes over labeled bipartite graphs, as a generalization of those supporting keyword search over text files. The first is a generic construction from any DSSE, and the other is a concrete construction from scratch. For the latter, we designed a novel data structure called cascaded triangles, in which traversals can be performed in parallel while updates only affect the local regions around the updated nodes. Besides neighbor queries, our schemes support flexible edge additions and intelligent node deletions: The server can delete all edges connected to a given node, without having the client specify all the edges.


  1. 1.
    Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable encryption. ACM Comput. Surv. 47(2), 18:1–18:51 (2014)CrossRefGoogle Scholar
  2. 2.
    Bost, R.: \(\sum \)o\(\varphi \)o\(\varsigma \): forward secure searchable encryption. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1143–1154 (2016)Google Scholar
  3. 3.
    Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_20 CrossRefGoogle Scholar
  4. 4.
    Chen, Y.-C., Chow, S.S.M., Chung, K.-M., Lai, R.W.F., Lin, W.-K., Zhou, H.-S.: Cryptography for parallel RAM from indistinguishability obfuscation. In: Sudan, M. (ed.) ITCS 2016, Cambridge, MA, USA, 14–16 January 2016, pp. 179–190. ACM (2016)Google Scholar
  5. 5.
    Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Juels, A., Wright, R.N., Sabrina De Capitani di Vimercati, (eds.) ACM CCS 2006, Alexandria, Virginia, USA, 30 October–3 November 2006, pp. 79–88. ACM Press (2006)Google Scholar
  6. 6.
    Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: Improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)CrossRefGoogle Scholar
  7. 7.
    Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53015-3_20 CrossRefGoogle Scholar
  8. 8.
    Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, Scottsdale, AZ, USA, 3–7 November 2014, pp. 310–320. ACM Press (2014)Google Scholar
  9. 9.
    Islam, S.M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption: ramification, attack and mitigation. In: NDSS 2012, San Diego, CA, USA, 5–8 February 2012. The Internet Society (2012)Google Scholar
  10. 10.
    Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39884-1_22 CrossRefGoogle Scholar
  11. 11.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, Raleigh, NC, USA, 16–18 October 2012, pp. 965–976. ACM Press (2012)Google Scholar
  12. 12.
    Lai, R.W.F., Chow, S.S.M.: Structured encryption with non-interactive updates and parallel traversal. In: 35th IEEE International Conference on Distributed Computing Systems, ICDCS 2015, Columbus, OH, USA, 29 June–2 July 2015, pp. 776–777 (2015)Google Scholar
  13. 13.
    Lai, R.W.F., Chow, S.S.M.: Parallel and dynamic structured encryption. In: SECURECOMM 2016 (2016, to appear)Google Scholar
  14. 14.
    Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryption: attacks and new construction. Inf. Sci. 265, 176–188 (2014)CrossRefGoogle Scholar
  15. 15.
    Rizomiliotis, P., Gritzalis, S.: ORAM based forward privacy preserving dynamic searchable symmetric encryption schemes. In: Proceedings of the 2015 ACM Workshop on Cloud Computing Security Workshop, CCSW 2015, Denver, Colorado, USA, 16 October 2015, pp. 65–76 (2015)Google Scholar
  16. 16.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp. 44–55. IEEE Computer Society Press, May 2000Google Scholar
  17. 17.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS 2014, San Diego, CA, USA, 23–26 February 2014. The Internet Society (2014)Google Scholar
  18. 18.
    Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 707–720 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information EngineeringThe Chinese University of Hong KongShatin, N.T.Hong Kong

Personalised recommendations