A Practical Chosen Message Power Analysis Approach Against Ciphers with the Key Whitening Layers

  • Chenyang Tu
  • Lingchen ZhangEmail author
  • Zeyi Liu
  • Neng Gao
  • Yuan Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10355)


The key whitening is a technique intended to enhance the strength of a block cipher. Although some research work involves DPA attacks against the key whitening layer in the compact architecture, there are no literatures dedicated in the influence of the key whitening layers in the loop architecture from the standpoint of DPA. In this paper, we propose a practical chosen message power analysis approach against the loop architecture of ciphers with the key whitening layers, thus proving that the key whitening technique does not enhance the security of ciphers regard to DPA. Our approach follows a reduction strategy: we recover the whitening key in the general cipher with the key whitening layer and reduce other complicated key whitening layers to the general case. In order to further manifest the validity of the new approach, we carry extensive experiments on two ISO standardized ciphers CLEFIA and Camellia implemented in loop architecture on FPGA, and the keys are recovered as expected.


DPA Key whitening Chosen message Loop architecture 


  1. 1.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi: 10.1007/3-540-48405-1_25 CrossRefGoogle Scholar
  2. 2.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74619-5_12 CrossRefGoogle Scholar
  3. 3.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 41–54. Springer, Heidelberg (2001). doi: 10.1007/3-540-44983-3_4 CrossRefGoogle Scholar
  4. 4.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28632-5_2 CrossRefGoogle Scholar
  5. 5.
    Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_33 CrossRefGoogle Scholar
  6. 6.
    Kopf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks. In: Ning, P., De Capitani Vimercati di, S., Syverson, P.F. (eds.) Proceedings of the 14th ACM Conference on Computer and Communications Security, ACM-CCS 2007, pp. 286–296. ACM (2007)Google Scholar
  7. 7.
    Kim, Y., Ahn, J., Choi, H.: Power and electromagnetic analysis attack on a smart card implementation of CLEFIA. In: International Conference on Security and Management, SAM 2013 (2013)Google Scholar
  8. 8.
    Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power analysis, what is now possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502. Springer, Heidelberg (2000). doi: 10.1007/3-540-44448-3_38 CrossRefGoogle Scholar
  9. 9.
    Lu, Y., O’Neill, M.P., McCanny, J.V.: Differential power analysis resistance of Camellia and countermeasure strategy on FPGAs. In: International Conference on Field-Programmable Technology, pp. 183–189 (2009)Google Scholar
  10. 10.
    Xiao, L., Heys, H.: A simple power analysis attack against the key schedule of the Camellia block cipher. Inf. Process. Lett. 95, 409–412 (2005). ElsevierMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification of software power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 293–310. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40349-1_17 CrossRefGoogle Scholar
  12. 12.
    Moradi, A., Schneider, T.: Improved side-channel analysis attacks on xilinx bitstream encryption of 5, 6, and 7 series. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 71–87. Springer, Cham (2016). doi: 10.1007/978-3-319-43283-0_5 CrossRefGoogle Scholar
  13. 13.
    Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks highlight the importance of countermeasures. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 1–18. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27954-6_1 CrossRefGoogle Scholar
  14. 14.
    Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13708-2_12 CrossRefGoogle Scholar
  15. 15.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74619-5_13 CrossRefGoogle Scholar
  16. 16.
    Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_14 CrossRefGoogle Scholar
  17. 17.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, New York (2007). ISBN: 978-0-387-30857-9Google Scholar
  18. 18.
    Rodríguez-Henríquez, F., Saqib, N.A., Díaz-Pèrez, A., Koc, Ç.K.: Cryptographic Algorithms on Reconfigurable Hardware (Signals and Communication Technology). Springer, Heidelberg (2006)Google Scholar
  19. 19.
    ISO/IEC 29192–2:2011. Information technology - Security techniques - Lightweight cryptography-Part 2: Block ciphers (2011)Google Scholar
  20. 20.
    ISO/IEC 18033–3:2010. Information technology - Security techniques - Encryption Algorithms-Part 3: Block ciphers (2010)Google Scholar
  21. 21.
    New European Schemes for Signatures, Integrity, and Encryption (NESSIE). NESSIE Project Announces Final Selection of Crypto Algorithms (2003)Google Scholar
  22. 22.
    Cryptography Research and Evaluation Committees (CRYPTREC). e-Government recommended ciphers list (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chenyang Tu
    • 1
    • 2
  • Lingchen Zhang
    • 1
    • 2
    Email author
  • Zeyi Liu
    • 1
    • 2
    • 3
  • Neng Gao
    • 1
    • 2
  • Yuan Ma
    • 1
    • 2
  1. 1.State Key Laboratory of Information SecurityInstitute of Information Engineering, CASBeijingChina
  2. 2.Data Assurance and Communication Security Research Center, CASBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations