Advertisement

More Efficient Construction of Bounded KDM Secure Encryption

  • Kaoru KurosawaEmail author
  • Rie Habuka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10355)

Abstract

Let \(sk_i\) be the secret-key of user i for \(i=1, \ldots , \ell \), and \(pk_j\) be the public-key of user \(j \in \{1, \ldots , \ell \}\). A bounded Key Dependent Message (KDM) secure encryption scheme \(\mathcal{E}_{\mathrm{b-KDM}}\) provides security even when one encrypts \(f(sk_1, \ldots , sk_{\ell })\) under \(pk_j\) for any function f which has arbitrarily fixed circuit size. An \(\mathcal{E}_{\mathrm{b-KDM}}\) is known to be constructed from projection KDM seucrity. In this paper, we first show that it can be obtained from much weaker KDM security than the projection KDM security. We next present more efficient \(\mathcal{E}_{\mathrm{b-KDM}}\) than before under various assumptions.

Keywords

KDM Key dependent message Encryption Garbling scheme 

Supplementary material

References

  1. 1.
    Applebaum, B.: Key-dependent message security: generic amplification and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_29 CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_35 CrossRefGoogle Scholar
  3. 3.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_1 CrossRefGoogle Scholar
  4. 4.
    Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_22 CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85174-5_7 CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM Conference on Computer and Communications Security, pp. 784–796 (2012). Cryptology ePrint Archive, Report 2012/265Google Scholar
  7. 7.
    Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_28 CrossRefGoogle Scholar
  8. 8.
    Valiant, L.G.: Universal circuits (preliminary report). In: STOC, pp. 196–203 (1976)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ibaraki UniversityHitachiJapan

Personalised recommendations