Advertisement

Related-Key Impossible-Differential Attack on Reduced-Round Skinny

  • Ralph AnkeleEmail author
  • Subhadeep Banik
  • Avik Chakraborti
  • Eik List
  • Florian Mendel
  • Siang Meng Sim
  • Gaoli Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10355)

Abstract

At CRYPTO’16, Beierle et al. presented SKINNY, a family of lightweight tweakable block ciphers intended to compete with the NSA designs SIMON and SPECK. SKINNY can be implemented efficiently in both soft- and hardware and supports block sizes of 64 and 128 bits as well as tweakey sizes of 64, 128, 192 and 128, 256, 384 bits respectively. This paper presents a related-tweakey impossible-differential attack on up to 23 (out of 36) rounds of SKINNY-64/128 for different tweak sizes. All our attacks can be trivially extended to SKINNY-128/128.

Keywords

Symmetric Cryptography Cryptanalysis Tweakable block cipher Impossible differential Lightweight cryptography 

Notes

Acknowledgements

This work was initiated during the group sessions of the 6th Asian Workshop on Symmetric Cryptography (ASK 2016) held in Nagoya, Japan. Ralph Ankele is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. H2020-MSCA-ITN-2014-643161 ECRYPT-NET. Gaoli Wang is supported by National Natural Science Foundation of China (Grant Nos. 61572125, 61373142), Shanghai High-Tech Field Project (Grant No. 16511101400). Siang Meng Sim is supported by the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06). This work has been supported in part by the Austrian Science Fund (project P26494-N15).

References

  1. 1.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers (2013). Cryptology ePrint Archive, Report 2013/404. http://eprint.iacr.org/
  2. 2.
    Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: Cryptanalysis competition (2016). https://sites.google.com/site/skinnycipher/cryptanalysis-competition
  3. 3.
    Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53008-5_5 CrossRefGoogle Scholar
  4. 4.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_2 Google Scholar
  5. 5.
    Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45608-8_15 Google Scholar
  6. 6.
    Knudsen, L.: DEAL - A 128-bit Block Cipher. In: NIST AES Proposal (1998)Google Scholar
  7. 7.
    Liu, G., Ghosh, M., Ling, S.: Security Analysis of SKINNY under Related-Tweakey Settings (2016). Cryptology ePrint Archive, Report 2016/1108. http://eprint.iacr.org/2016/1108
  8. 8.
    Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of Reduced round SKINNY Block Cipher (2016). Cryptology ePrint Archive, Report 2016/1120. http://eprint.iacr.org/2016/1120
  9. 9.
    Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). doi: 10.1007/978-3-319-57339-7_7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ralph Ankele
    • 1
    Email author
  • Subhadeep Banik
    • 2
  • Avik Chakraborti
    • 3
  • Eik List
    • 4
  • Florian Mendel
    • 5
  • Siang Meng Sim
    • 2
  • Gaoli Wang
    • 6
  1. 1.Royal Holloway University of LondonEghamUK
  2. 2.Nanyang Technological UniversitySingaporeSingapore
  3. 3.NTT Secure Platform LaboratoriesTokyoJapan
  4. 4.Bauhaus-Universität WeimarWeimarGermany
  5. 5.Graz University of TechnologyGrazAustria
  6. 6.East China Normal UniversityShanghaiChina

Personalised recommendations