The Determination of Stellar and Planetary Astrophysical Parameters

  • Kaspar von Braun
  • Tabetha Boyajian
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)


Stellar characterization is an old and established field within astronomy—which is not to say that it is easy or that stars are sufficiently well understood in general. Many determinations of stellar parameters rely, by necessity, on indirect measurements and/or assumptions, especially if direct data are sparse, such as is the case for low-mass stars, by which we mean here stars whose outer layers are fully convective, making energy transport to the stellar surface poorly understood. Calibrations linking non-observable quantities to directly determined parameters have to constantly be revised and improved. Constraints imposed by new data on the hugely important stellar models serve to increase their predictive power. In this Chapter, we briefly describe our methods used for the direct determination of stellar astrophysical parameters, elaborate on their usefulness, and discuss the applicability of the parameters to other insights into exoplanet science.


  1. Andersen J., 1991, A&A Rev., 3, 91ADSCrossRefGoogle Scholar
  2. Bohlin R. C., Gordon K. D., Tremblay P. E., 2014, PASP, 126, 711ADSGoogle Scholar
  3. Bonneau D. et al., 2006, A&A, 456, 789ADSCrossRefGoogle Scholar
  4. Bonneau D., Delfosse X., Mourard D., Lafrasse S., Mella G., Cetre S., Clausse J. M., Zins G., 2011, A&A, 535, A53ADSCrossRefGoogle Scholar
  5. Boyajian T. et al., 2015, MNRAS, 447, 846ADSCrossRefGoogle Scholar
  6. Boyajian T. S., van Belle G., von Braun K., 2014, AJ, 147, 47ADSCrossRefGoogle Scholar
  7. Boyajian T. S. et al., 2012a, ApJ, 746, 101Google Scholar
  8. Boyajian T. S. et al., 2012b, ApJ, 757, 112Google Scholar
  9. Boyajian T. S. et al., 2013, ApJ, 771, 40ADSCrossRefGoogle Scholar
  10. Buscher D. F., Longair F. b. M., 2015, Practical Optical InterferometryGoogle Scholar
  11. Buzzoni A., Chavez M., Malagnini M. L., Morossi C., 2001, PASP, 113, 1365ADSCrossRefGoogle Scholar
  12. Casagrande L., Ramírez I., Meléndez J., Bessell M., Asplund M., 2010, A&A, 512, A54ADSCrossRefGoogle Scholar
  13. Chandler C. O., McDonald I., Kane S. R., 2016, AJ, 151, 59ADSCrossRefGoogle Scholar
  14. Claret A., 2000, A&A, 363, 1081ADSGoogle Scholar
  15. Claret A., Bloemen S., 2011, A&A, 529, A75ADSCrossRefGoogle Scholar
  16. Hanbury Brown R., Davis J., Allen L. R., 1974a, MNRAS, 167, 121Google Scholar
  17. Hanbury Brown R., Davis J., Lake R. J. W., Thompson R. J., 1974b, MNRAS, 167, 475Google Scholar
  18. Huber D., 2016, ArXiv e-printsGoogle Scholar
  19. Huber D. et al., 2013, ApJ, 767, 127ADSCrossRefGoogle Scholar
  20. Kane S. R., 2014, ApJ, 782, 111ADSCrossRefGoogle Scholar
  21. Kane S. R., Hinkel N. R., 2013, ApJ, 762, 7ADSCrossRefGoogle Scholar
  22. Kane S. R., Barclay T., Gelino D. M., 2013, ApJ, 770, L20ADSCrossRefGoogle Scholar
  23. Kane S. R. et al., 2016, ApJ, 830, 1ADSCrossRefGoogle Scholar
  24. Kasting J. F., Whitmire D. P., Reynolds R. T., 1993, Icarus, 101, 108ADSCrossRefGoogle Scholar
  25. Kellerer A., Tokovinin A., 2007, A&A, 461, 775ADSCrossRefGoogle Scholar
  26. Kopparapu R. K., Ramirez R. M., SchottelKotte J., Kasting J. F., Domagal-Goldman S., Eymet V., 2014, ApJ, 787, L29ADSCrossRefGoogle Scholar
  27. Kopparapu R. K. et al., 2013a, ApJ, 770, 82Google Scholar
  28. Kopparapu R. K. et al., 2013b, ApJ, 765, 131Google Scholar
  29. Labeyrie A., 1975, ApJ, 196, L71ADSCrossRefGoogle Scholar
  30. Labeyrie A., 1978, Annual Reviews in Astronomy and Astrophysics, 16, 77ADSCrossRefGoogle Scholar
  31. Labeyrie A., Lipson S. G., Nisenson P., 2014, An Introduction to Optical Stellar InterferometryGoogle Scholar
  32. Lafrasse S., Mella G., Bonneau D., Duvert G., Delfosse X., Chelli A., 2010a, VizieR Online Data Catalog, 2300, 0Google Scholar
  33. Lafrasse S., Mella G., Bonneau D., Duvert G., Delfosse X., Chesneau O., Chelli A., 2010b, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7734Google Scholar
  34. Lawson P. R., ed., 2000, Principles of Long Baseline Stellar InterferometryGoogle Scholar
  35. Léna P., 2014, in EAS Publications Series. EAS Publications Series, Vol. 69, pp. 3–13Google Scholar
  36. Mann A. W., von Braun K., 2015, PASP, 127, 102ADSCrossRefGoogle Scholar
  37. Mann A. W., Gaidos E., Ansdell M., 2013, ApJ, 779, 188ADSCrossRefGoogle Scholar
  38. Mann A. W., Feiden G. A., Gaidos E., Boyajian T., von Braun K., 2015, ApJ, 804, 64ADSCrossRefGoogle Scholar
  39. Michelson A. A., Pease F. G., 1921a, ApJ, 53, 249Google Scholar
  40. Michelson A. A., Pease F. G., 1921b, Contributions from the Mount Wilson Observatory / Carnegie Institution of Washington, 203, 1Google Scholar
  41. Monnier J. D., 2003, Reports on Progress in Physics, 66, 789ADSCrossRefGoogle Scholar
  42. Newton E. R., Charbonneau D., Irwin J., Berta-Thompson Z. K., Rojas-Ayala B., Covey K., Lloyd J. P., 2014, AJ, 147, 20ADSCrossRefGoogle Scholar
  43. Nuñez P. D., ten Brummelaar T., Mennesson B., Scott N. J., 2017, PASP, 129, 024002ADSCrossRefGoogle Scholar
  44. Pickles A. J., 1998, PASP, 110, 863ADSCrossRefGoogle Scholar
  45. Ricker G. R., 2014, Journal of the American Association of Variable Star Observers (JAAVSO), 42, 234ADSGoogle Scholar
  46. Spada F., Demarque P., Kim Y. C., Boyajian T. S., Brewer J. M., 2017, ApJ, 838, 161ADSCrossRefGoogle Scholar
  47. ten Brummelaar T., Tuthill P., van Belle G., 2013a, Journal of Astronomical Instrumentation, 2, 1303001Google Scholar
  48. ten Brummelaar T. A., McAlister H. A., 2013, Optical and Infrared Interferometers. p. 241Google Scholar
  49. ten Brummelaar T. A. et al., 2005, ApJ, 628, 453ADSCrossRefGoogle Scholar
  50. ten Brummelaar T. A. et al., 2013b, Journal of Astronomical Instrumentation, 2, 1340004Google Scholar
  51. Torres G., 2007, ApJ, 671, L65ADSCrossRefGoogle Scholar
  52. Torres G., Andersen J., Giménez A., 2010, A&A Rev., 18, 67ADSCrossRefGoogle Scholar
  53. van Belle G. T., 2008, PASP, 120, 617ADSCrossRefGoogle Scholar
  54. van Belle G. T., 2015, in G. Meynet, C. Georgy, J. Groh, P. Stee, eds, IAU Symposium. IAU Symposium, Vol. 307, pp. 252–260Google Scholar
  55. van Belle G. T., van Belle G., 2005, PASP, 117, 1263ADSCrossRefGoogle Scholar
  56. van Belle G. T., von Braun K., 2009, ApJ, 694, 1085ADSCrossRefGoogle Scholar
  57. van Cittert P. H., 1934, Physica, 1, 201ADSCrossRefGoogle Scholar
  58. van Leeuwen F., 2007, Hipparcos, the New Reduction of the Raw Data. Hipparcos, the New Reduction of the Raw Data. By Floor van Leeuwen, Institute of Astronomy, Cambridge University, Cambridge, UK Series: Astrophysics and Space Science Library, Vol. 350 20 Springer DordrechtGoogle Scholar
  59. von Braun K. et al., 2011a, ApJ, 740, 49Google Scholar
  60. von Braun K. et al., 2011b, ApJ, 729, L26+Google Scholar
  61. von Braun K. et al., 2011c, ArXiv e-prints; astro-ph/1107.1936Google Scholar
  62. von Braun K. et al., 2012, ApJ, 753, 171ADSCrossRefGoogle Scholar
  63. von Braun K. et al., 2014, MNRAS, 438, 2413ADSCrossRefGoogle Scholar
  64. Winn J. N., 2010, ArXiv e-prints; astro-ph/1001.2010Google Scholar
  65. Zernike F., 1938, Physica, 5, 785ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kaspar von Braun
    • 1
  • Tabetha Boyajian
    • 2
  1. 1.Lowell ObservatoryFlagstaffUSA
  2. 2.Department of Physics & AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations