Skip to main content

Inferring Disease Status by Non-parametric Probabilistic Embedding

  • Conference paper
  • First Online:
Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging (BAMBI 2016, MCV 2016)

Abstract

Computing similarity between all pairs of patients in a dataset enables us to group the subjects into disease subtypes and infer their disease status. However, robust and efficient computation of pairwise similarity is a challenging task for large-scale medical image datasets. We specifically target diseases where multiple subtypes of pathology present simultaneously, rendering the definition of the similarity a difficult task. To define pairwise patient similarity, we characterize each subject by a probability distribution that generates its local image descriptors. We adopt a notion of affinity between probability distributions which lends itself to similarity between subjects. Instead of approximating the distributions by a parametric family, we propose to compute the affinity measure indirectly using an approximate nearest neighbor estimator. Computing pairwise similarities enables us to embed the entire patient population into a lower dimensional manifold, mapping each subject from high-dimensional image space to an informative low-dimensional representation. We validate our method on a large-scale lung CT scan study and demonstrate the state-of-the-art prediction on an important physiologic measure of airflow (the forced expiratory volume in one second, FEV1) in addition to a 5-category clinical rating (so-called GOLD score).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batmanghelich, N.K., Saeedi, A., Cho, M., Estepar, R.S.J., Golland, P.: Generative method to discover genetically driven image biomarkers. In: International Conference on Information Processing and Medical Imaging, vol. 17 (1), pp. 30–42 (2015)

    Google Scholar 

  2. Castaldi, P.J., San José Estépar, R., Mendoza, C.S., Hersh, C.P., Laird, N., Crapo, J.D., Lynch, D.A., Silverman, E.K., Washko, G.R.: Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am. J. Respir. Crit. Care Med. 188(9), 1083–1090 (2013)

    Article  Google Scholar 

  3. Chang, B., Kruger, U., Kustra, R., Zhang, J.: Canonical correlation analysis based on hilbert-schmidt independence criterion and centered kernel target alignment. In: Proceedings of the 30th International Conference on Machine Learning, pp. 316–324 (2013)

    Google Scholar 

  4. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Gerber, S., Tasdizen, T., Joshi, S., Whitaker, R.: On the manifold structure of the space of brain images. Med. Image Comput. Comput. Assist. Interv. 12(Pt 1), 305–312 (2009)

    Google Scholar 

  6. Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: Gram: a framework for geodesic registration on anatomical manifolds. Med. Image Anal. 14(5), 633–642 (2010)

    Article  Google Scholar 

  7. Holzer, M., Donner, R.: Over-segmentation of 3D medical image volumes based on monogenic cues. In: CVWW (January 2014), pp. 35–42 (2014)

    Google Scholar 

  8. Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger, O.: Rotation-invariant hog descriptors using fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Loftsgaarden, D.O., Quesenberry, C.P., et al.: A nonparametric estimate of a multivariate density function. Anna. Math. Stat. 36(3), 1049–1051 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lynch, D.A.: Progress in imaging copd, 2004–2014. J. COPD Found. Chronic Obstructive Pulm. Dis. 1(2), 155–165 (2014)

    Article  Google Scholar 

  11. Lynch, D.A., Al-Qaisi, M.A.: Quantitative computed tomography in chronic obstructive pulmonary disease. J. Thorac. Imaging 28(5), 284–290 (2013)

    Article  Google Scholar 

  12. Muja, M., Lowe, D.G.: Scalable nearest neighbour algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

    Article  Google Scholar 

  13. Regan, E.A., Hokanson, J.E., Murphy, J.R., Make, B., Lynch, D.A., Beaty, T.H., Curran-Everett, D., Silverman, E.K., Crapo, J.D.: Genetic epidemiology of copd (copdgene) study design. COPD: J. Chronic Obstructive Pulm. Dis. 7(1), 32–43 (2011)

    Article  Google Scholar 

  14. Schroeder, J.D., McKenzie, A.S., Zach, J.A., Wilson, C.G., Curran-Everett, D., Stinson, D.S., Newell, J.D., Lynch, D.A.: Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. American Journal of Roentgenology 201(3) (2013)

    Google Scholar 

  15. Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–606 (2009)

    Article  Google Scholar 

  16. Sorensen, L., Nielsen, M., Lo, P., Ashraf, H., Pedersen, J.H., De Bruijne, M.: Texture-based analysis of copd: a data-driven approach. IEEE Trans. Med. Imaging 31(1), 70–78 (2012)

    Article  Google Scholar 

  17. Toews, M., Wachinger, C., Estepar, R.S.J., Wells, W.M.: A feature-based approach to big data analysis of medical images. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 339–350. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_26

    Chapter  Google Scholar 

  18. Vogl, W.-D., Prosch, H., Müller-Mang, C., Schmidt-Erfurth, U., Langs, G.: Longitudinal alignment of disease progression in fibrosing interstitial lung disease. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 97–104. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_13

    Google Scholar 

  19. Wang, Q., Kulkarni, S.R., Verdú, S.: Divergence estimation for multidimensional densities via-nearest-neighbor distances. IEEE Trans. Inf. Theory 55(5), 2392–2405 (2009)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Z., Wang, J.: Mlle: modified locally linear embedding using multiple weights. Adv. Neural Inf. Process. Syst. 19, 1593–1600 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nematollah Kayhan Batmanghelich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Batmanghelich, N.K., Saeedi, A., Estepar, R.S.J., Cho, M., Wells, W.M. (2017). Inferring Disease Status by Non-parametric Probabilistic Embedding. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61188-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61187-7

  • Online ISBN: 978-3-319-61188-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics