Skip to main content

Wear Prediction for Tribosystems Based on Debris Analysis

  • Chapter
  • First Online:
On-line Condition Monitoring in Industrial Lubrication and Tribology

Part of the book series: Applied Condition Monitoring ((ACM,volume 8))

Abstract

The chapter considers the predictive maintenance of machines and mechanisms basing on wear debris analysis because they relate to the mode and severity of wear. Review of laboratory, portable and on-line wear monitoring techniques based on wear debris analysis is presented. It is shown that if it is necessary to have maximal information on the wear particles it is advisable to use the laboratory methods. The complex built-in systems are justified for use in expensive and critical equipment (e.g. airplanes and helicopters).When complete information on the wear particles is not required, the simpler and less expensive field diagnosis methods are suitable. It was found that the magneto-optical field methods are the most promising. The portable and on-line versions of Opto-Magnetic Detector (OMD) are described. The operation of OMD is based on variation in optical density of oil containing ferromagnetic particles under the effect of magnetic field. OMD has been used in wear monitoring of industrial air compressor system for two years and it was found very sensitive to failure of the gear unit and metal bearings presenting earlier information on severe wear of friction units than vibration monitoring. Description of the Optical Ferroanalyzer is presented which in addition to Ferrograph allows one to estimate total contamination of the oil, increasing reliability of engine condition monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.C. Westcott, Monitoring of Wear in Fundamentals of Tribology (MIT Press, Cambridge MA, 1978), pp. 811–829

    Google Scholar 

  2. J.H. Johnson, in Monitoring of machine wear by used oil analysis. Proceedings of International Conference on Fundamentals of Tribology (Cambridge, Massachusetts, 1978)

    Google Scholar 

  3. F.F. Lockwood, Dalley, Lubricant Analysis, 18th edition, Metals Handbook, Tribology, vol 19 (ASM, 1992), pp. 300–312

    Google Scholar 

  4. D.P. Anderson, Wear particle atlas (revised). Naval Air Eng. Center, Report NAEC-92-163 (Foxboro Edition, Burlington, 1982), p. 192

    Google Scholar 

  5. D.C. Schalcosky, C.S. Byington, Advances in real time oil analysis. Practicing Oil Analysis 11 (2000). Available: http://www.machinerylubrication.com/Read/138/real-time-oil-analysis

  6. R. Bowen, D. Scott, W. Seifert, V. Westcott, Ferrography. Trib. Int. 9(3), 109–115 (1976)

    Article  Google Scholar 

  7. G. Pocock, The observation of spherical debris from a failed soft metal bearing. Wear 38(1), 189–191 (1976)

    Article  Google Scholar 

  8. J. Kleis, U. Muiste, U. Pilvre, H. Uuemois, H. Uetz, The physical mechanism of the formation of metal microspheres in the wear process. Wear 53(1), 79–85 (1979)

    Article  Google Scholar 

  9. K. Nakayama, J. Okamoto, Wear particle distribution and its relation to the wear transition under boundary lubrication. Wear 70(1), 125–129 (1981)

    Article  Google Scholar 

  10. J. Ding, Determining fatigue wear using wear particle analysis tools. Practicing Oil Analysis 9 (2003). Available: http://www.machinerylubrication.com/Read/526/fatigue-wear-particle-analysis

  11. T. Kayaba, К. Kato, T. Akagaki, Ferrographic study of wear (second report) – the valuation of wear conditions with a magnetic wear separator. J. JSLE Int. Ed. 1, 53–58 (1986)

    Google Scholar 

  12. A.A. Reda, R. Bowen, V.C. Westcott, Characteristics of particles generated at the interface between sliding steel surfaces. Wear 34(3), 261–273 (1975)

    Article  Google Scholar 

  13. P.B. Senholzi, Oil analysis/wear particle analysis. Tribology 1978: Materials Performance and Conservation (Swansea, 1978), pp. 129–136

    Google Scholar 

  14. B.J. Roylance, G. Pocock, Wear study through particle size distribution I: application of the Weibull distribution to ferrography. Wear 90(1), 113–136 (1983)

    Article  Google Scholar 

  15. P.T. Barwell, The contribution of particle analysis to the study of wear of metals. Wear 90(1), 167–181 (1983)

    Article  Google Scholar 

  16. O.P. Sondhiya, A.K. Gupta, Wear debris analysis of automotive engine lubricating oil using by ferrography. Int. J. Innov. Res. Sci. Eng. Technol. 2(5), 46–54 (2012)

    Google Scholar 

  17. D. Scott, V.C. Westcott, Predictive maintenance by ferrography. Wear 44(1), 173–182 (1977)

    Article  Google Scholar 

  18. R.T. Lewis, Application of magnetization measurements to wear debris analysis. Wear 74, 177–190 (1981)

    Article  Google Scholar 

  19. ASTM D7684–11: Standard Guide for Microscopic Characterization of Particles from In-Service Lubricants

    Google Scholar 

  20. Z. Peng, T.B. Kirk, Wear particle classification in a fuzzy grey system. Wear 225229(Part 2), 1238–1247 (1999)

    Google Scholar 

  21. N.K. Myshkin, A.Ya. Grigoriev, L.V. Markova, Condition monitoring of tribosystems by wear debris analysis. Int. J. of Applied Mechanics and Engineering 7(3), 923–947 (2002)

    Google Scholar 

  22. G.W. Stachowiak, P. Podsiadlo, Surface characterization of wear particle. Wear 225229(Part 2), 1171–1185 (1999)

    Google Scholar 

  23. T.B. Kirk, D. Panzera D, R.V. Anamalay, Z.L. Xu, Computer image analysis of wear debris for machine condition monitoring and fault diagnosis. Wear 181183(Part 2), 717–722 (1995)

    Google Scholar 

  24. H. Wu, N.M. Kwok, S. Liu, T. Wu, Z. Peng, A prototype of on-line extraction and three-dimensional characterisation of wear particle features from video sequence. Wear 368–369, 314–325 (2016)

    Article  Google Scholar 

  25. T. Wu, Y. Peng, S. Wang, F. Chen, N. Kwok, Z. Peng, Morphological feature extraction based on Multiview images for wear debris analysis in on-line fluid monitoring, Tribol. Trans. Jun 2016, pp. 1–11. http://dx.doi.org/10.1080/10402004.2016.1174325

  26. L.V. Markova, N.K. Myshkin, Tribojunction diagnostics based on wear particles. Trenie Iznos 9(6), 1109–1118 (1988)

    Google Scholar 

  27. N.K. Myshkin, O.V. Kholodilov, L.V. Markova, M.S. Semenyuk, Diagnostics of lubricated moving junction wear. Trenie Iznos 7(6), 1091–1101 (1986)

    Google Scholar 

  28. T. Hansen, P. Skiba, C.R. Hodkins, Determination of iron in used lubricating oils by spectrochemical analysis. Anal. Chem. 23(10), 1362–1365 (1951)

    Article  Google Scholar 

  29. L.R.P. Butler, D.B.O. Villiers, Spectrometric oil analysis for tracing unusual wear in lubricated systems. S. Afr. Mech. Eng. 23(12), 261–266 (1973)

    Google Scholar 

  30. E.J. McCormack, N. Oil analysis, Prod. Eng. 28(4), 82–85 (1981)

    Google Scholar 

  31. L.L. McCorriston, W.M. Meston, Improved wear metals analysis for lubricant field trials. SAE Techn. Pap. Ser. 1979. N 790935

    Google Scholar 

  32. T.M. Hunt, Handbook of wear debris analysis and particle detection in liquids (Elsevier Science, London and New York, 1993), p. 488

    Google Scholar 

  33. M. Lukas, R.J. Yurko, Current technology in oil analysis spectrometers and what we may expect in the future. Integrated monitoring, diagnostics and failure prevention. in Proceedings of a Joint Conference, Mobile, Alabama, pp. 161–171, 1996

    Google Scholar 

  34. H. Levinsohn, Limitations of atomic absorption spectrophotometry applied to spectrometric oil analysis. ASLE Trans. 27(1), 24–32 (1984)

    Article  Google Scholar 

  35. G. Cumming, I.G. McDonald, The determination of iron in lubricatisng oil by X-ray fluorescence spectrometry. Wear 103(1), 57–66 (1985)

    Article  Google Scholar 

  36. J.L. Berg, J.E. Lieser, Lubricant testing as an oil to bearing damage analysis. Lubr. Eng. 29(12), 539–543 (1973)

    Google Scholar 

  37. Z. Yang, X. Hou, B.T. Jones, Determination of wear metals in engine oil by mild acid digestion and energy dispersive X-ray fluorescence spectrometry using solid phase extraction disks. Talanta 59(4), 673–680 (2003)

    Article  Google Scholar 

  38. G.R. Humphrey, Condition-based monitoring using energy dispersive X-ray fluorescence. Lubr. Eng. 55(10), 19–26 (1999)

    Google Scholar 

  39. D. Severin, O. Glinzer, E. Wedepdil, U. Hildebrandt, Zur Mesung von motorenolverschmutzung. Schmierungstechnik + Tribologie 28(3), 87–88 (1981)

    Google Scholar 

  40. B. Carbonel, Lubrification des roulements detection et analyse de la pollution par particles. Mec. Mater. Elec. 59(316), 40–41 (1976)

    Google Scholar 

  41. S. Norose, M. Sato, T. Sasada, Ferrographic analysis of wear particles produced under lubrication condition (Part I). J. JSLE Int. Ed. 5, 35–40 (1984)

    Google Scholar 

  42. D. Scott, V.C. Westcott, Recent developments in machinery condition monitoring by ferrography. in Proceedings of the Cconference “Patterns of Tribology”, Paisley, pp. 503–509, 1979

    Google Scholar 

  43. B.J. Roylance, Ferrography–then and now. Trib. Int. 38(10), 857–862 (2005)

    Article  Google Scholar 

  44. A. Lobarzewska, Zastosowanie metody fotoelektryczney do oceny wiasnosci dyspergujacych olejow smarowych. Techn. Smarown. 4, 117–121 (1973). (in Poland)

    Google Scholar 

  45. M.C. Isa, N.H.N. Yusoff, H. Naina, M.S.D. Yati, M.M. Muhammada, I.M. Nor, Ferrographic analysis of wear particles of various machinery systems of a commercial marine ship. Procedia Eng. 68, 345–351 (2013)

    Article  Google Scholar 

  46. L.A. Shabalinskaya, V.V. Golovanov, E.S. Bubnova, L.V. Milinis, The Study of the possibility of the tribodiagnostics of the technical condition of the helicopter main reduction gear. J. Friction Wear 36(1), 96–101 (2015)

    Article  Google Scholar 

  47. A.L. Price, B.J. Roylance, The rotary particle depositor a response to problems experienced with wear particle deposition. Proceedings of International Conference on Condition Monitoring (Swansea, 1984) pp. 596–607

    Google Scholar 

  48. A.L. Price, B.J. Roylance, L.X. Zi, The PQ—a method for the rapid quantification of wear debris. in Proceedings of International Conference on Condition Monitoring (Swansea, 1987) pp. 391–405

    Google Scholar 

  49. N. Myshkin, Studies of wear debris in oils by magnetic method. Colloid J. 42(5), 988–991 (1980)

    Google Scholar 

  50. M. Lukas, D.P. Anderson, T. Sebok, D. Filicky, LaserNet Fines—a new tool for the oil analysis toolbox. Practicing Oil Analysis 9 (2002). Available: http://www.machinerylubrication.com/Read/383/lasernet-fines-oil-analysis

  51. Device for detecting and monitoring debris in oil (on-line ferrograph), Pat. JP 4-49902 G01 N 15/02. Published 12 Aug 1992

    Google Scholar 

  52. F. Colladon, Pat. US 9,248,454 B08B 5/00, B03C 1/28, B03C 1/032. Device and method for recovering magnetic particles trapped on a magnetic plug—No. 20120204910. Filed 16.08.12. Published 02 Feb 2016

    Google Scholar 

  53. R. Kudrna, Pat. Application US20150177116, G01 N 15/10, G01N015/10, H01F 7/02, G01 N 27/74. Magnetic chip detector/collector. Published 25 Jun 2015

    Google Scholar 

  54. J-P.Y. Bares, E.Y. Blanchard, US 5027065 F16 N 29/00, G01 N 027/74, G01R 033/12. Particle sensor plug with wireless casing connection—No. 07/524,491. Filed 17.05.90. Published 25 Jun 1991

    Google Scholar 

  55. W.E. Rumberger, Pat. US5118410 B01D 35/14, G01 N 15/06, F01 M 11/03. Debris collecting and measuring device with induction coil screen—No. 07/544,941. Filed 28.06.90. Published 02 Jun 1992

    Google Scholar 

  56. C.E. Freese V, M.J. Rostoskey, R.E. Garvey III, Pat. US 5604441 G01 N 27/22, G01 N 33/26, F01 M 11/03, G01R 027/26. In-situ oil analyzer and methods of using same, particularly for continuous on-board analysis of diesel engine lubrication systems—No. 08/403,638. Filed 14.03.95. Published 18 Feb 1997

    Google Scholar 

  57. F.J-C. Makowski, A. Thenaisie, Pat. FR2667153 F16N29/00, G01N21/53, G01V8/16. Sensor for impurities in a fluid and its use in a circuit – No. FR19900011843. Filed 26.09.90. Published 27 Mar 1992

    Google Scholar 

  58. R.W. Bogue, An improved magnetic plug for the continuous monitoring of wear debris. in Proceedings of International Conference on Condition Monitoring (Swansea, 1984) pp. 628–635

    Google Scholar 

  59. M. Montuschi, M. Incardona, Pat. EP0290397 F16N29/00, G01N15/06. Sensor for detecting the ferromagnetic-particle content of a fluid—No. EP19880830071. Priority 06.03.87. Published 09 Nov 1988

    Google Scholar 

  60. M.S. Ozogan, A.I. Khalil, P.S. Katsoulakos, Tribological failure detection and condition monitoring for diesel engines. Wear 130(1), 189–201 (1989)

    Article  Google Scholar 

  61. K.W. Chambers, Pat. EP0223400, G01F1/56, G01N15/06, G01N27/72, G01N33/28. Ferromagnetic wear detector and method—No. EP19860307862. Filed 11.10.85. Published 27 May 1987

    Google Scholar 

  62. S. Itomi, Pat. US 7,151,383 G01R 27/08, G01 N 33/20. Oil condition sensor—No. US 2005021253, Filed 29.09.05. Published 19 Dec 06

    Google Scholar 

  63. T.E. Tauber, P.L. Howard, QDM—a smart on-line debris monitoring system. in Proceedings of International Conference on Condition Monitoring (Swansea, 1984) pp. 617—627

    Google Scholar 

  64. E. Tsaprazis, Pat. US 4831362 F16 N 29/00, G01 N 33/26, G01 N 15/06, G01 V 13/00, G08B 029/00, G01R 035/00, G01 N 027/74. Failure detection system for a metallic debris detection system—No. 06/863,838. Filed 16.05.86. Published 16 May 1989

    Google Scholar 

  65. M. Bradford, Pat. US 4598280 F16 N 29/00, G07C 3/00, G01R 027/02, G01R 033/12, G01 N 015/06. Electric chip detector—No. 06/642,302. Filed 20.08.84. Published. 01 Jul 1986

    Google Scholar 

  66. Y. Liu, S.Z. Wen, Y.B. Xie, F. Zhao, Advances in research on a multichannel on-line ferrograph. Trib. Int. 30(4), 279–282 (1997)

    Article  Google Scholar 

  67. T.H. Wu, J.H. Mao, J.T. Wang, J.Y. Wu, Y.B. Xie, A new on-line visual ferrograph. Tribol. Trans. 52(5), 623–631 (2009)

    Article  Google Scholar 

  68. T. Wu, J. Wang, Y. Peng, Y. Zhang, Description of wear debris from on-line ferrograph images by their statistical color. Tribol. Trans. 55(5), 606–614 (2012)

    Article  Google Scholar 

  69. Y. Liu, Z. Liu, Y. Xie, Z. Yao, Research on an on-line wear condition monitoring system for marine diesel engine. Trib. Int. 33(12), 829–835 (2000)

    Article  Google Scholar 

  70. W.E. Rumberger, C.B. GROSS, Pat. EP0572730 B01D35/143, G01N15/06, F01M11/03. Wear detector—No. EP19920304977. Filed 28.06.90. Published 08 Dec 1993

    Google Scholar 

  71. D.E Muir, B. Howe, In-line oil debris monitor (ODM) for the advanced tactical fighter engine. in Proceedings of a Joint ConferenceIntegrated monitoring, diagnostics and failure prevention” (Mobile, Alabama, 1996) pp. 111—118

    Google Scholar 

  72. H. Zhan, Y. Song, H. Zhao, J. Gu, H. Yang, S. Li, Study of the sensor for on-line lubricating oil debris monitoring. Sens. Transducers 175(7), 214–219 (2014)

    Google Scholar 

  73. W.A. Veronesi, A.P. Weise, R.W. Reed, H.I. Ringermacher, Pat. US4926120 G01 V 3/10, G01 V 003/00, G01R 033/12. In-line metallic debris particle detection system—No. 07/290,531. Filed 2712.88. Published 15 May 1990

    Google Scholar 

  74. E. Becker, T. Knoell, R. Hoelzl, Pat. US 8,354,836 G01 N 27/72, G01R 33/12. Device and process for detecting particles in a flowing liquid – No. 20080150518. Filed 26.06.08. Published 15 Jan 2013

    Google Scholar 

  75. L.V. Markova, N.K. Myshkin, M.S Semenjuk, V.M Makarenko, A.V. Kolesnikov, V.I. Kokleev, Pat. RU2234080 G01N27/74. Device for detection of metal particles in a flow of lubricating stuff – No. RU20030113971. Filed 12.05.03. Published 10 Aug 2004

    Google Scholar 

  76. W. Hong, S. Wang, M. Tomovic, H. Liu, X. Wang, A new debris sensor based on dual excitation sources for online debris monitoring. Meas. Sci. Technol. 26(9) 095101 (12 pp) (2015)

    Google Scholar 

  77. D.W. Singleton, Pat. EP0159094 G01N15/06, G01N27/04, G01N33/28, G01V3/02. Apparatus for detecting metal debris particles—No. EP19850200566. Filed 17.04.84. Published 23 Oct 1985

    Google Scholar 

  78. S. Murali, X.G. Xia, A.V. Jagtiani, J.E. Carletta, J. Zhe, Capacitive coulter counting: detection of metal wear particles in lubricant using a microfluidic device. Smart Mater. Struct. (2009). doi:10.1088/0964-1726/18/3/037001

    Google Scholar 

  79. J. Zhe, L. Du, J.E. Carlett, R.J. Veillette, Pat. US8,522,604 G01 N 27/74, Metal wear detection apparatus and method employing microfluidic electronic device – No.US 20100109686. Filed 30.10.09. Published 03 Sept. 2013

    Google Scholar 

  80. J. Otokar, Pat. EP0254882 G01N29/04. Particle detector – No. EP19870109243. Filed 07.07.86. Published 03.02.88

    Google Scholar 

  81. J.G. Miller, R.E. Clark, M.S. Conradi, D.R. Dietz, J.S. Heyman, Pat. US 4,015,464 G01 N 29/032, G01 N 29/02, G01 N 29/036, G01 N 015/00. Ultrasonic continuous wave particle monitor—No. 05/551,913. Filed 21.02.75. Published 05.04.77

    Google Scholar 

  82. M. Williamson, The low-down on particle counters. Practicing Oil Analysis 7 (2002). Available: http://www.machinerylubrication.com/Read/351/particle-counters

  83. B.T. Kuhnell, J.S. Stecki, Z. Przelozny, X. Huang, C.E. Doran, Pat. US5790246 G01 N 15/02, G01 N 15/06, F01 M 11/03, G01 N 033/28, G01 N 021/00, G01T 001/167. Apparatus and network for determining a parameter of a particle in a fluid employing detector and processor—No. 08/634,207. Filed 18.04.96. Published 04 Aug 1998

    Google Scholar 

  84. O.K. Kwon, H.S. Kong, H.G. Han, E.-S. Yoon, N.K. Myshkin, L.V. Markova, M.S. Semeniouk, Pat. US6151108 G01 N 15/02, G01 N 21/03, G01 N 21/59, G01 N 21/05;, G01 N 33/26, G01 N 33/28, G01 N 21/01.On-line measurement of contaminant level in lubricating oil—No. 09/386,168. Filed 31.08.99. Published 21 Nov 2000

    Google Scholar 

  85. I. Nelson, Pat. US5982847 G01 N 23/22. Compact X-ray fluorescence spectrometer for real-time wear metal analysis of lubricating oils – No. 08/958,415. Filed 27.10.97. Published 09 Nov 1999

    Google Scholar 

  86. B.W. Wilson, S. Price, In-line X-ray fluorescence spectroscopy. Lubr. Fluid Power. 2000, 16–19

    Google Scholar 

  87. K.R. Astley, P. Anuzis, I.C.D. Care, T.A. Moore, P.G. Morris, P.D. Rees, Pat. US6794865 G01R 33/563, G01R 33/54, G01 V 003/00. Monitoring the health of a fluid system—No. 09/949,671. Filed 12.09.01. Published 21 Sept 04

    Google Scholar 

  88. L.V. Markova, M.S. Semenyuk, Main trends in developing methods and built-in devices for wear diagnosis of tribosystems. J. Friction Wear 17(3), 82–86 (1996)

    Google Scholar 

  89. O.K. Kwon, H. Kong, H-G Han, E-S Yoon, N.K. Myshkin, L.V. Markova, M.S. Semeniouk, Pat. US6151108 G01 N 33/28. On-line measurement of contaminant level in lubricating oil—No. 09/386,168. Filed 31.08.99. Published 21 Nov 2000

    Google Scholar 

  90. L.V. Markova., N.K. Myshkin, M.S. Semenyuk, O.K. Kwon, H. Kong, Wear monitoring with on-line optico-madnetic detector. in Proceedings of the 11th International Conference on Condition Monitoring and Diagnostic Engineering Management, vol. II, (Laurceston, Austalia, 1998), pp. 585–590

    Google Scholar 

  91. N.K. Myshkin, L.V. Markova, M.S. Semenyuk, O.K. Kwon, H. Kong, On-line opto-magnetic detector and its application for air compressor system monitoring. in Proceedings of the 12th International ColloquiumTribology 2000-Plus”, vol. III, (Esslingen, 2000), pp. 1571–1576

    Google Scholar 

  92. N.K. Myshkin, L.V. Markova, M.S. Semenyuk, H. Kong, H.-G. Han, E.-S. Yoon, Wear monitoring based on the analysis of lubricant contamination by optical ferroanalyzer. Wear 255(7–12), 1270–1275 (2003)

    Article  Google Scholar 

  93. L.V. Markova, Problems of magneto–optic diagnostics of the wear of lubricated moving junctions. Trenie Iznos 11(2), 338–342 (1990)

    Google Scholar 

  94. A. Einstein, M. Smoluchowski, Brownian motion (ONTI, Moscow, 1936), p. 607 (in Russian)

    Google Scholar 

  95. V.E. Fertman, Magnetic fluids (Minsk, Nauka, 1988), p. 184 (in Russian)

    Google Scholar 

  96. P.G. De Gennes, P.A. Pincus, Pair correlation in a ferromagnetic colloid. Phys. Kond. Mat. 11, 189–198 (1970)

    Article  Google Scholar 

  97. N.K. Myshkin, L.V. Markova, Y.E. Kirpichenko, Field optic-magnetic detector application to used oil analysis. in Proceedings of the 11th International Colloquium of Industrial and Automotive Lubrication, Esslingen, vol. III, pp. 1975–1978, 1998

    Google Scholar 

  98. J.S. Stecki, B.T. Kuhnell, Ferrographic analysis of high speed gears operating under steady and variable load conditions (Proceedings of International conference on Condition Monitoring, Brighton, England, 1986), pp. 85–104

    Google Scholar 

  99. D.L. Naas, Pat. US5402113, G08 B017/10. Metal particle detector apparatus for non-conducting fluid systems—No.08/112,936. Filed 30.08.93. Published 28 Mar 95

    Google Scholar 

  100. British Coal Wear Particle Atlas (Headquarters Technical Department, 1984), p. 14

    Google Scholar 

  101. Swansea Tribology Center, A Guide to Wear Particle Recognition for Use with the Rotary Particle Depositor (Swansea Tribology Center, UK, 1990), p. 40

    Google Scholar 

  102. C.M. Stellman, K.J. Ewing, F. Bucholtz, I.D. Aggarwal, Monitoring the degradation of a synthetic lubricant oil using infrared absorption, fluorescence emission and multivariate analysis: a feasibility study. Lubr. Eng. 56(3), 42–52 (1999)

    Google Scholar 

  103. G.F. Hayes, Observation of association in a ferromagnetic colloid. J. Colloid Interface Sci. 52(2), 239–243 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai K. Myshkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Myshkin, N.K., Markova, L.V. (2018). Wear Prediction for Tribosystems Based on Debris Analysis. In: On-line Condition Monitoring in Industrial Lubrication and Tribology. Applied Condition Monitoring, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-61134-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61134-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61133-4

  • Online ISBN: 978-3-319-61134-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics