Skip to main content

Non-CO2 Greenhouse Gases

  • Chapter
  • First Online:
High-Mountain Atmospheric Research

Abstract

In the past decades, accurate and precise atmospheric measurements of radiatively active gases have been crucial in revealing the rapid and unceasing growth of their global concentrations that has been long recognized as the main driver of climate change. Even if carbon dioxide is the major anthropogenic contributor to radiative forcing, other gases such as methane, nitrous oxide, and halogenated gases are extremely relevant in climate issues because of their very high global warming potential. Continuous measurement programs of these gases are carried out at CMN in the frame of important international programs. This chapter reports an overview of the scientific results obtained based on 15 years of atmospheric measurements. These results have been achieved combining atmospheric data with different modeling approaches, with the aim of understanding the budget of these radiatively active gases and providing emission estimates at the regional scale. Such estimates constitute an important support to improve bottom-up emission data that each country is required to submit every year in the frame of the most important international global protocols aimed at combatting climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergamaschi P, Behrend H, Jol A (eds) (2004) Inverse modelling of national and EU greenhouse gas emission inventories – report of the workshop inverse modelling for potential verification of national and EU bottom-up GHG inventories, EN/ISBN 92-894-7455-6, European Commission Joint Research Centre, Ispra

    Google Scholar 

  • Bousquet P, Ciais P, Miller JB et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  Google Scholar 

  • Bruhwiler L, Dlugokencky E, Masarie K et al (2014) CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos Chem Phys 14:8269–8293

    Article  Google Scholar 

  • Brunner D, Henne S, Keller CA et al (2012) An extended Kalman-filter for regional scale inverse emission estimation. Atmos Chem Phys 12:3455–3478

    Article  Google Scholar 

  • Carpenter LJ, Reimann S (Lead Authors) et al (2014) Ozone-Depleting Substances (ODSs) and other gases of interest to the Montreal Protocol, Chapter 1 in Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project - Report no. 55, World Meteorological Organization, Geneva

    Google Scholar 

  • Dlugokencky EJ, Masarie KA, Lang PM et al (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393:447–450

    Article  Google Scholar 

  • Dlugokencky EJ, Bruhwiler L, White JWC et al (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36:L18803

    Article  Google Scholar 

  • Eckhardt S, Prata AJ, Seibert P et al (2008) Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modelling. Atmos Chem Phys 8:3881–3897

    Article  Google Scholar 

  • EDGAR (Emission Database for Global Atmospheric Research), release version 4.2 FT2010 (2011) European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL): http://edgar.jrc.ec.europa.eu

  • Fang X, Velders GJ, Ravishankara M et al (2016) Hydrofluorocarbon (HFC) emissions in China: an inventory for 2005–2013 and projections to 2050. Environ Sci Technol 50:2027–2034

    Article  Google Scholar 

  • Farman JC, Gardiner G, Shanklin D (1985) Large losses of total ozone in Antarctica reveal seasonal ClO x /NO x interaction. Nature 315:207–210

    Article  Google Scholar 

  • Fraser A, Palmer PI, Feng L et al (2013) Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements. Atmos Chem Phys 13:5697–5713

    Article  Google Scholar 

  • Fraser PJ, Dunse B, Manning AJ (2014) Australian carbon tetrachloride (CCl4) emissions in a global context. Environ Chem 11:77–88

    Article  Google Scholar 

  • Ghosh A, Patra PK, Ishijima K et al (2015) Variations in global methane sources and sinks during 1910–2010. Atmos Chem Phys 15:2595–2612

    Article  Google Scholar 

  • Giostra U, Furlani F, Arduini J et al (2011) The determination of a regional atmospheric background mixing ratio for anthropogenic greenhouse gases: a comparison of two independent methods. Atmos Environ 45:7396–7405

    Article  Google Scholar 

  • Graziosi F, Arduini J, Furlani F et al (2015) European emissions of HCFC-22 based on eleven years of high frequency atmospheric measurements and a Bayesian inversion method. Atmos Environ 112:196–207

    Article  Google Scholar 

  • Graziosi F, Arduini J, Bonasoni P et al (2016) Emissions of carbon tetrachloride from Europe. Atmos Chem Phys 16:12849–12859

    Article  Google Scholar 

  • Graziosi F, Arduini J, Furlani F et al (2017) European emissions of the powerful greenhouse gases hydrofluorocarbons inferred from atmospheric measurements and their comparison with annual national reports to UNFCCC. Atmos Environ, accepted

    Google Scholar 

  • Greally BR, Manning AJ, Reimann S et al (2007) Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates. J Geophys Res 112:D06308

    Article  Google Scholar 

  • Henne S, Brunner D, Oney B et al (2016) Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmos Chem Phys 16:3683–3710

    Article  Google Scholar 

  • Houweling S, Krol M, Bergamaschi P et al (2014) A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmos Chem Phys 14:3991–4012

    Article  Google Scholar 

  • Hu L, Montzka SA, Miller JB et al (2015) U.S. emissions of HFC-134a derived for 2008–2012 from an extensive flask-air sampling network. J Geophys Res Atmos 120:801–825

    Article  Google Scholar 

  • Hu L, Montzka SA, Miller BR et al (2016) Continued emissions of carbon tetrachloride from the U.S. nearly two decades after its phase-out for dispersive uses. Proc Natl Acad Sci U S A 113:2880–2885

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on climate change) (2001) climate change 2001: the scientific basis. Contribution of working group I to the third assessment report. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (Intergovernmental Panel on climate change) (1990) Report prepared by working group I. Houghton JT, Jenkins GJ, Ephraums JJ (eds) Cambridge University Press, Cambridge/New York/Melbourne

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC/TEAP (technology and economic assessment Panel) special report on safeguarding the ozone layer and the global climate e system: issues related to Hydrofluorocarbons and Perfluorocarbons. Prepared by working group I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel, Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2006) Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K et al (eds) Published: IGES, Japan

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K et al (eds) Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Keller CA, Brunner D, Henne S et al (2011) Evidence for under-reported western European emissions of the potent greenhouse gas HFC-23. Geophys Res Lett 38:L15808

    Google Scholar 

  • Keller CA, Hill M, Vollmer MK et al (2012) European emissions of halogenated greenhouse gases inferred from atmospheric measurements. Environ Sci Technol 46:217–225

    Article  Google Scholar 

  • Kim J, Li S, Kim K-Y et al (2010) Regional atmospheric emissions determined from measurements at Jeju Island, Korea: halogenated compounds from China. Geophys Res Lett 37:L12801

    Google Scholar 

  • Kirschke S, Bousquet P, Ciais P et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  Google Scholar 

  • Krol MC, Lelieveld J, Oram DE et al (2003) Continuing emissions of methyl chloroform from Europe. Nature 421:131–135

    Article  Google Scholar 

  • Li S, Kim J, Kim K-R et al (2010) Emissions of halogenated compounds in East Asia determined from measurements at Jeju Island, Korea. Environ Sci Technol 45:5668–5675

    Article  Google Scholar 

  • Lunt MF, Rigby M, Ganesan AL (2015) Reconciling reported and unreported HFC emissions with atmospheric observations. Proc Natl Acad Sci U S A 112:5927–5593

    Article  Google Scholar 

  • Maione M, Arduini J, Mangani G et al (2004) Evaluation of an automated gas chromatographic - mass spectrometric instrumentation to be used for continuous monitoring of trace anthropogenic greenhouse gases. Int J Environ Anal Chem 84(4):241–253

    Article  Google Scholar 

  • Maione M, Giostra U, Arduini J et al (2013) Ten years of continuous observations of stratospheric ozone depleting gases at Monte Cimone (Italy) - comments on the effectiveness of the Montreal Protocol from a regional perspective. Sci Tot Environ 445-446:155–164

    Article  Google Scholar 

  • Maione M, Graziosi F, Arduini J et al (2014) Estimates of European emissions of methyl chloroform using a Bayesian inversion method. Atmos Chem Phys 14:9755–9770

    Article  Google Scholar 

  • Manning AJ, O’Doherty S, Jones AR et al (2011) Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modelling approach. J Geophys Res 116(D2):D02305

    Article  Google Scholar 

  • Meirink JF, Bergamaschi P, Krol MC (2008) Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion. Atmos Chem Phys 8:6341–6353

    Article  Google Scholar 

  • Miller BR, Weiss RF, Salameh PK et al (2008) Medusa: a sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulphur compounds. Anal Chem 80:1536–1545

    Article  Google Scholar 

  • Miller BR, Rigby M, Kuijpers LJM et al (2010) HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures. Atmos Chem Phys 10:7875–7890

    Article  Google Scholar 

  • Miller JB, Lehman SJ, Montzka SA et al (2012) Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14 CO2. J Geophys Res 117:D08302

    Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249:810–812

    Article  Google Scholar 

  • Montzka SA, Spivakovsky CM, Butler JH et al (2000) New observational constraints for atmospheric hydroxyl on global and hemispheric scales. Science 288:500–503

    Article  Google Scholar 

  • Montzka SA, Kuijpers L, Battle MO et al (2010) Recent increases in global HFC-23 emissions. Geophys Res Lett 37:L02808

    Article  Google Scholar 

  • Montzka SA, Reimann S (lead authors) et al (2011) Ozone-Depleting Substances (ODSs) and related chemicals, Chapter 1 in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No 52, World Meteorological Organization, Geneva

    Google Scholar 

  • Nisbet E, Weiss R (2010) Top-down versus bottom-up. Science 328:1241–1243

    Article  Google Scholar 

  • O’Doherty SJ, Nickless G, Bassford M et al (1999) Separation of hydrohalocarbons and chlorofluorocarbons using a cyclodextrin gas solid chromatography capillary column. J Chromatogr A 832:253–258

    Article  Google Scholar 

  • O’Doherty S, Rigby M, Mühle J et al (2014) Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations. Atmos Chem Phys 14:9249–9258

    Article  Google Scholar 

  • Odabasi M, Elbir T, Dumanoglu Y et al (2014) Halogenated volatile organic compounds in chlorine-bleach-containing household products and implications for their use. Atmos Environ 92:376–383

    Article  Google Scholar 

  • Prinn RG, Weiss RF, Fraser PJ et al (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res 105(D14):17751–17792

    Article  Google Scholar 

  • Prinn RG, Huang J, Weiss RF et al (2001) Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292:1882–1888

    Article  Google Scholar 

  • Prinn RG, Huang J, Weiss RF et al (2005) Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys Res Lett 32:L07809

    Article  Google Scholar 

  • Reimann S, Manning AJ, Simmonds PG et al (2005) Low European methyl chloroform emissions inferred from long-term atmospheric measurements. Nature 433:506–508

    Article  Google Scholar 

  • Rigby M, Prinn RG, Fraser PJ et al (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35:L22805

    Article  Google Scholar 

  • Saikawa E, Rigby M, Prinn RG et al (2012) Global and regional emissions estimates for HCFC-22. Atmos Chem Phys 12:10033–10050

    Article  Google Scholar 

  • Seibert P (2000) Inverse modelling of sulphur emissions in Europe based on trajectories. In: Kasibhatla P, Heimann M, Rayner P et al (eds) Inverse Methods in Global Biogeochemical Cycles, Geophysical Monograph, vol 114. American Geophysical Union, Washington, DC, pp 147–154. ISBN:0-87590-097-6

    Chapter  Google Scholar 

  • Seibert P (2001) Inverse modelling with a Lagrangian particle dispersion model: application to point releases over limited time intervals. In: Schiermeier FA, Gryning SE (eds) Air pollution modeling and its application XIV. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189

    Article  Google Scholar 

  • Simmonds PG, Cunnold DM, Weiss RF et al (1998) Global trends and emissions estimates of CCl4 from in-situ background observations from July 1978 to June 1996. J Geophys Res 103:16,017–16,027

    Article  Google Scholar 

  • Simmonds PG, O’Doherty S, Derwent RG et al (2004) AGAGE observations of methyl bromide and methyl chloride at the Mace Head, Ireland and Cape Grim, Tasmania, 1998–2001. J Atmos Chem 47(3):243–269

    Article  Google Scholar 

  • Simmonds PG, Rigby M, Manning AJ et al (2016) Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations. Atmos Chem Phys 16:365–382

    Article  Google Scholar 

  • SPARC (Stratosphere-troposphere Processes And their Role in Climate) (2016) SPARC report on the mystery of carbon tetrachloride. Liang Q, Newman PA, Reimann S (eds) SPARC report no. 7, WCRP-13/2016 doi: 10.3929/ethz-a-010690647

  • Stemmler K, Folini D, Ubl S et al (2007) European emissions of HFC-365mfc, a chlorine-free substitute for the foam blowing agents HCFC-141b and CFC-11. Environ Sci Technol 41:1145–1151

    Article  Google Scholar 

  • Stohl A, Forster C, Frank A et al (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474

    Article  Google Scholar 

  • Stohl A, Seibert P, Arduini J et al (2009) An analytical inversion method for determining regional and global emissions of greenhouse gases: sensitivity studies and application to halocarbons. Atmos Chem Phys 9:1597–1620

    Article  Google Scholar 

  • Stohl A, Kim J, Li S et al (2010) Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modelling. Atmos Chem Phys 10:3545–3560

    Article  Google Scholar 

  • Tsuruta A, Aalto T, Backman L et al (2016) Development of CarbonTracker Europe-CH4 – Part 2: global methane emission estimates and their evaluation for 2000–2012. Geoscientific Model Development Discussions doi:10.5194/gmd-2016-182, in review, 2016

  • UNEP (United Nations Environ Programme) (1987) The Montreal protocol on substances that deplete the ozone layer. United Nations Environ Programme, Nairobi

    Google Scholar 

  • UNEP (United Nations Environ Programme) (2007) Report of the halons technical options committee, 2006 assessment. United Nations Environment Programme, Ozone Secretariat, Nariobi, Kenya

    Google Scholar 

  • UNEP (United Nations Environ Programme) (2011) HFCs: a critical link in protecting climate and the ozone layer. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNEP (United Nations Environ Programme) (2014) Report of the methyl bromide technical options committee. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNEP (United Nations Environ Programme) (2015a) Proposed amendment to the Montreal Protocol submitted by Canada, Mexico and the United States of America. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNEP (United Nations Environ Programme) (2015b) Proposed amendment to the Montreal Protocol submitted by European Union and its member states. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNEP (United Nations Environ Programme) (2015c) Proposed amendment to the Montreal Protocol submitted by India. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNEP (United Nations Environ Programme) (2015d) Proposed amendment to the Montreal Protocol submitted by Kiribati, Marshall Islands, Mauritius, Micronesia (federated states of), Palau, Philippines, Samoa and Solomon Islands. United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNFCCC (United Nations Framework Convention on Climate Change) (1997) Kyoto Protocol to the United Nations framework Convention on climate change. United Nations, Geneva

    Google Scholar 

  • Velders GJM, Andersen SO, Daniel JS et al (2007) The importance of the Montreal Protocol in protecting climate. Proc Natl Acad Sci U S A 104(12):4814–4819

    Article  Google Scholar 

  • Velders GJM, Fahey DW, Daniel JS et al (2009) The large contribution of projected HFC emissions to future climate forcing. Proc Natl Acad Sci U S A 106:10949–10954

    Article  Google Scholar 

  • Velders GJM, Ravishankara AR, Miller MK et al (2012) Preserving Montreal protocol climate benefits by limiting HFCs. Science 335:922–923

    Article  Google Scholar 

  • Velders GJM, Fahey DW, Daniel JS et al (2015) Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmos Environ 123:200–209

    Article  Google Scholar 

  • Vollmer MK, Zhou LX, Greally BR et al (2009) Emissions of ozone-depleting halocarbons from China. Geophys Res Lett 36:L15823

    Article  Google Scholar 

  • Vollmer MK, Miller BR, Rigby M et al (2011) Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa. J Geophys Res 116:D08304

    Article  Google Scholar 

  • Vollmer MK, Mühle J, Trudinger CM et al (2016) Atmospheric histories and global emissions of halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2). J Geophys Res Atmos 121(7):3663–3686

    Article  Google Scholar 

  • Weaver C, Kiemle C, Kawa SR et al (2014) Retrieval of methane source strengths in Europe using a simple modeling approach to assess the potential of spaceborne lidar observations. Atmos Chem Phys 14:2625–2637

    Article  Google Scholar 

  • Weiss RF, Prinn RG (2011) Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation. Phil Trans R Soc A 369:1925–1942

    Article  Google Scholar 

  • Xiao X, Prinn RG, Fraser PJ et al (2010a) Atmospheric three-dimensional inverse modelling of regional industrial emissions and global oceanic uptake of carbon tetrachloride. Atmos Chem Phys 10:10421–10434

    Article  Google Scholar 

  • Xiao X, Prinn RG, Fraser PJ et al (2010b) Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmos Chem Phys 10:5515–5533

    Article  Google Scholar 

  • Xu Y, Zaelke D, Velders GJM et al (2013) The role of HFCs in mitigating 21st century climate change. Atmos Chem Phys 13:6083–6089

    Article  Google Scholar 

  • Yao B, Vollmer MK, Zhou LX et al (2012) In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi regional background station, China. Atmos Chem Phys 12:10181–10193

    Article  Google Scholar 

  • Yokouchi Y, Taguchi S, Saito T et al (2006) High frequency measurements of HFCs at a remote site in east Asia and their implications for Chinese emissions. Geophys Res Lett 33:L21814

    Article  Google Scholar 

Download references

Acknowledgments

The results described in this chapter have been obtained, thanks to the collaboration with the science teams of the AGAGE consortium. This research started under the EU FP5 Project SOGE (EVK2-2000-00674). The InGOS EU FP7 Infrastructure project (grant agreement n° 284274) supported the observation and calibration activities. The University Consortium Consorzio Interuniversitario Nazionale per la Fisica delle Atmosfere e delle Idrosfere (CINFAI) supported F. Graziosi grant (RITMARE Flagship Project). The “O. Vittori” observatory is supported by the National Research Council of Italy and the Italian Ministry of Education, University, and Research, through the Project of National Interest “Nextdata.”

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Cristofanelli, P. et al. (2018). Non-CO2 Greenhouse Gases. In: High-Mountain Atmospheric Research . SpringerBriefs in Meteorology. Springer, Cham. https://doi.org/10.1007/978-3-319-61127-3_2

Download citation

Publish with us

Policies and ethics