Skip to main content

Mast Cells in Angiogenesis: The Role of Angiogenic Cytokines

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

  • 874 Accesses

Abstract

The proximity of mast cells to blood vessels has long suggested a relationship between these cells and angiogenesis. Moreover, the role of mast cells in this process is mostly certain related to the release of a large spectrum of angiogenic cytokines, including vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), transforming growth factor beta (TGFβ), tumor necrosis factor alpha (TNFα), interleukin-8 (IL-8) and angiopoietin-1 (Ang-1). In this context, mast cells might act as a new target for the adjuvant treatment of tumors through the elective inhibition of angiogenesis. Preclinical studies in experimental models using anti-cKit antibodies, or the mast cell stabilizer disodium cromoglycate have shown promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Majid RM, Marshall JS (2004) Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J Immunol 172:1227–1236

    Article  CAS  PubMed  Google Scholar 

  2. Akin C, Metcalfe DD (2004) The biology of Kit in disease and the application of pharmacogenetics. J Allergy Clin Immunol 114:13–19

    Article  CAS  PubMed  Google Scholar 

  3. Bachelet I, Levi-Schaffer F, Mekori YA (2006) Mast cells: not only in allergy. Immunol Allergy Clin N Am 26:407–425

    Article  Google Scholar 

  4. Boesiger J, Tsai M, Maurer M et al (1998) Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcε receptor I expression. J Exp Med 188:1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bosquiazzo VL, Ramos JG, Varayoud J et al (2007) Mast cell degranulation in rat uterine cervix during pregnancy correlates with expression of vascular endothelial growth factor mRNA and angiogenesis. Reproduction 133:1045–1055

    Article  CAS  PubMed  Google Scholar 

  6. Cao L, Curtis CL, Theoharides TC (2006) Corticotropin-releasing hormone induces vascular endothelial growth factor release from human mast cells via the cAMP/protein kinase A/p38 mitogen activate protein kinase pathway. Mol Pharmacol 69:998–1006

    CAS  PubMed  Google Scholar 

  7. Chen JJ, Applebaum DS, Sun GS et al (2014) Atopic keratoconjunctivitis: a review. J Am Acad Dermatol 70:569–575

    Article  PubMed  Google Scholar 

  8. Cimpean AM, Raica M (2016) The hidden side of disodium cromolyn: from mast cell stabilizer to an angiogenic factor and antitumor agent. Arch Immunol Ther Exp 64(6):515–522

    Article  CAS  Google Scholar 

  9. da Silva EZ, Jamur MC, Oliver C (2014) Mast cell function: a new vision of an old cell. J Histochem Cytochem 62:698–738

    Article  PubMed  PubMed Central  Google Scholar 

  10. Detmar M, Brown LF, Schön MP et al (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111:1–6

    Article  CAS  PubMed  Google Scholar 

  11. Detoraki A, Staiano RI, Granata F et al (2009) Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol 123:1142–1149

    Article  CAS  PubMed  Google Scholar 

  12. Dubreuil P, Letard S, Ciufolini M et al (2009) Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One 4(9):e7258

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ferguson A, Cummins AG, Munro GH et al (1987) Roles of mucosal mast cells in intestinal cell-mediated immunity. Ann Allergy 59:40–43

    CAS  PubMed  Google Scholar 

  14. Fonseca E, Solís J (1985) Mast cells in the skin: progressive systemic sclerosis and the toxic oil syndrome. Ann Intern Med 102:864–865

    Article  CAS  PubMed  Google Scholar 

  15. Galli SJ, Kalesnikoff J, Grimbaldeston MA et al (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  CAS  PubMed  Google Scholar 

  16. Gleixner KV, Mayerhofer M, Sonneck K et al (2007) Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 92:1451–1459

    Article  CAS  PubMed  Google Scholar 

  17. Gounaris E, Erdman SE, Restaino C et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104:19977–19982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gruber BL, Marchese MJ, Kew R (1995) Angiogenic factors stimulate mast cell migration. Blood 86:2488–2493

    CAS  PubMed  Google Scholar 

  19. Grutzkau A, Kruger-Krasagakes S, Baumesteir H et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF 206. Mol Biol Cell 9:875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo X, Zhai L, Xue R et al (2016) Mast cell tryptase contributes to pancreatic cancer growth through promoting angiogenesis vi activation of angiopoietin-1. Int J Mol Sci 17:834

    Article  PubMed Central  Google Scholar 

  21. Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imada D, Shijubo N, Kojima H et al (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15:1087–1093

    Article  CAS  PubMed  Google Scholar 

  23. Johansson A, Rudolf S, Hammarsten P et al (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Le Cesne A, Blay JY, Bui BN et al (2010) Phase II study of oral masitinib mesilate in imatinib-naive patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer 46:1344–1351

    Article  PubMed  Google Scholar 

  25. Metcalfe DD (2008) Mast cells and mastocytosis. Blood 112:946–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitry E, Hammel P, Deplanque G et al (2010) Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol 66:395–403

    Article  CAS  PubMed  Google Scholar 

  27. Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pittoni P, Piconese S, Tripodo C et al (2011) Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 30:757–769

    Google Scholar 

  29. Pittoni P, Tripodo C, Piconese S et al (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997

    Article  CAS  PubMed  Google Scholar 

  30. Prenen H, Cools J, Mentens N et al (2006) Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin Cancer Res 12:2622–2627

    Article  CAS  PubMed  Google Scholar 

  31. Prevete N, Staiano R, Granata F et al (2013) Expression and function of angiopoietins and their Tie receptors in human basophils and mast cells. J Biol Regul Homeost Agents 27:827–839

    CAS  PubMed  Google Scholar 

  32. Qu Z, Kayton RJ, Ahmadi P et al (1998) Ultrastructural immunolocalization of basic fibroblast growth factor in mast cell secretory granules: morphological evidence for bFGF release through degranulation. J Histochem Cytochem 46:1119–1128

    Article  CAS  PubMed  Google Scholar 

  33. Ribatti D, Crivellato E, Candussio L et al (2001) Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy 31:602–608

    Article  CAS  PubMed  Google Scholar 

  34. Ribatti D, Vacca A, Ria R et al (2003) Neovascularization, expression of fibroblast growth factor-2, and mast cell with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 39:666–675

    Article  CAS  PubMed  Google Scholar 

  35. Ribatti D, Conconi MT, Nussdorfer GG (2007) Non-classic endogenous novel regulators of angiogenesis. Pharmacol Rev 59:185–205

    Article  CAS  PubMed  Google Scholar 

  36. Ribatti D, Nico B, Crivellato E et al (2007) The history of angiogenic switch concept. Leukemia 21:44–52

    Article  CAS  PubMed  Google Scholar 

  37. Ribatti D, Crivellato E (2009) Immune cells and angiogenesis. J Cell Mol Med 13:2822–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribatti D, Crivellato E (2011) Mast Cells and Tumours. Springer, Dordrecht

    Book  Google Scholar 

  39. Ribatti D, Ranieri G, Nico B et al (2011) Tryptase and chymase are angiogenic in vivo in the chorioallantoic membrane assay. Int J Dev Biol 55:99–102

    Article  PubMed  Google Scholar 

  40. Ribatti D (2012) Mast cells, angiogenesis and tumor growth. Biochim Biophys Acta Mol Basis Dis 1822:2–8

    Article  CAS  Google Scholar 

  41. Ribatti D, Crivellato E (2014) Mast cell ontogeny: an historical overview. Immunol Lett 159:11–14

    Article  CAS  PubMed  Google Scholar 

  42. Ribatti D, Crivellato E (2015) Tryptase, a novel angiogenic factor stored in mast cell granules. Exp Cell Res 332:157–162

    Google Scholar 

  43. Ribatti D (2016) The role of microenvironment in the control of tumor angiogenesis. Springer International Publishing, Dordrecht

    Google Scholar 

  44. Ribatti D (2016) The development of human mast cells. An historical reappraisal. Exp Cell Res 342:210–215

    Article  CAS  PubMed  Google Scholar 

  45. Samoszuk M, Corwin MA (2003) Acceleration of tumor growth and peri-tumoral blood clotting by imatinib mesylate (Gleevec). Int J Cancer 106:647–652

    Article  CAS  PubMed  Google Scholar 

  46. Sawatsubashi M, Yamada T, Fukushima N et al (2000) Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch 436:243–248

    Article  CAS  PubMed  Google Scholar 

  47. Schenck HP (1965) Mast cells in the upper respiratory tract. Ann Otol Rhinol Laryngol 74:863–873

    Article  CAS  PubMed  Google Scholar 

  48. Schittenhelm MM, Shiraga S, Schroeder A et al (2006) Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 66:473–481

    Article  CAS  PubMed  Google Scholar 

  49. Shah NP, Lee FY, Luo R et al (2006) Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 108:286–291

    Article  CAS  PubMed  Google Scholar 

  50. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    Article  CAS  PubMed  Google Scholar 

  51. Takanami I, Takeuchi K, Narume M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88:2686–2692

    Article  CAS  PubMed  Google Scholar 

  52. Toth T, Toth-Jakatics R, Jimi S et al (2000) Cutaneous malignant melanoma: correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Hum Pathol 31:955–960

    Article  Google Scholar 

  53. Ustun C, DeRemer DL, Akin C (2011) Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 35:1143–1152

    Article  CAS  PubMed  Google Scholar 

  54. von Bubnoff N, Gorantla SHP, Kancha RK et al (2005) The systemic mastocytosis-specific activating cKit mutation D816V can be inhibited by the tyrosine kinase inhibitor AMN107. Leukemia 19:1670–1671

    Article  Google Scholar 

  55. Voskas D, Jones N, Van Slyke P et al (2005) A cyclosporine-sensitive psoriasis-like disease produced in Tie2 transgenic mice. Am J Pathol 166:843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from “Associazione Italiana Mastocitosi”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ribatti, D. (2017). Mast Cells in Angiogenesis: The Role of Angiogenic Cytokines. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_8

Download citation

Publish with us

Policies and ethics