Skip to main content

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Angiogenesis critically depends on environmental factors. In particular, cellular adhesion and migration events play a critical role in the formation of new blood vessels from pre-existing cells in multiple pathological conditions. Integrins are a large family of cell surface receptors that transfer signals from the extracellular microenvironment into the intracellular compartment of endothelial cells or tumor cells. In this chapter, we review the role of integrins in inducing and maintaining angiogenesis by regulating the survival, proliferation and migration of endothelial cells as well as of tumor cells. Furthermore, we summarize some pharmacological approaches for modulating integrin signaling in tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  Google Scholar 

  2. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 7:1359–1370

    Article  Google Scholar 

  3. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820

    Article  CAS  PubMed  Google Scholar 

  4. Sastry SK, Burridge K (2000) Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 261:25–36

    Article  CAS  PubMed  Google Scholar 

  5. Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA (1997) Induction of the angiogenic phenotype by HoxD3. J Cell Biol 139:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumor xenografts. Nature 401:670–677

    Article  CAS  PubMed  Google Scholar 

  7. Ginsberg MH, Du X, Plow EF (1992) Inside out integrin signaling. Curr Opin Cell Biol 4:766–771

    Article  CAS  PubMed  Google Scholar 

  8. Heynes R (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  Google Scholar 

  9. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maeshima Y, Sudhakar A, Liverly JC et al (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143

    Article  CAS  PubMed  Google Scholar 

  11. Sund M, Hamano Y, Sugimoto H et al (2005) Function of endogenous inhibitors of angiogenesis as endothelium-specific suppressors. Proc Natl Acad Sci 102:2934–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfeifer A, Kessler T, Silletti S, Cheresh DA et al (2000) Suppression of angiogenesis by lentiviral delivery of PEX, a non-catalytic fragment of matrix metalloproteinase 2. Proc Natl Acad Sci 97:12227–12232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bridges E, Oon CE, Harris A (2011) Notch regulation of tumor angiogenesis. Future Oncol 7:569–588

    Article  CAS  PubMed  Google Scholar 

  14. Scheppke L, Murphy EA, Zarpellon A et al (2012) Notch promotes vascular maturation by inducing integrin-mediated smooth muscle cell adhesion to the endothelial basement membrane. Blood 119:2149–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lakshmikanthan S, Sobczak M, Chun C et al (2011) Rap 1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin avb3. Blood 118:2015–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oommen S, Gupta S, Vlahakis (2011) Vascular endothelial growth factor (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin a9b1. J Biol Chem 286:1083–1092

    Article  CAS  PubMed  Google Scholar 

  17. Hutchings H, Ortega N, Plouet J (2003) Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J 17:1520–1522

    CAS  PubMed  Google Scholar 

  18. Vlahakis NE, Young BA, Atakilit A, Sheppard D (2005) The lymphangiogenic vascular endothelial growth factor VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 280:4544–4552

    Article  CAS  PubMed  Google Scholar 

  19. Worthington JJ, Klementowicz JE, Travis MA (2011) TGF-β: a sleeping giant awoken by integrins. Trends Biochem Sci 36:47–54

    Article  CAS  PubMed  Google Scholar 

  20. Tchaicha JH, Reyes SB, Shin J et al (2011) Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by β8 integrin. Cancer Res 71:6371–6381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weller W, Silginer M, Goodman SL et al (2012) Effect of the integrin inhibitor cilengitide on TGF-beta signaling. J Clin Oncol 30 Suppl: abstr 2055

    Google Scholar 

  22. Schnell O, Krebs B, Wagner E et al (2008) Expression of integrin alphavbeta3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol 18:378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bello L, Francolini M, Marthyn P et al (2011) Alpha (v) beta3 and alpha (v) beta5 integrin expression in glioma periphery. Neurosurgery 49:380–389

    Google Scholar 

  24. Schnell O, Krebs B, Carlsen J et al (2009) Imaging of integrin alphaVbeta3 expression with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol 11:861–870

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 10:987–996

    Article  Google Scholar 

  26. Stupp R, Hegi M, Mason W et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-yesar analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  27. Wild-Bode C, Weller M, Wick W (2001) Molecular determinants of glioma cell migration and invasion. J Neurosurg 94:978–984

    Article  CAS  PubMed  Google Scholar 

  28. Maurer GD, Tritschler I, Adams B et al (2009) Cilengitide modulates attachment and viability of human glioma cells, but not sensitivity to irradiation or temozolomide in vitro. Neuro Oncol 11:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdollahi A, Griggs DW, Zieher H et al (2005) Inhibition of alpha (V) beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11:6270–6279

    Article  CAS  PubMed  Google Scholar 

  30. Mikkelsen T, Brodie C, Finniss S et al (2009) Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer 124:2719–2727

    Article  CAS  PubMed  Google Scholar 

  31. Muldoon LL, Gahramanov S, Li X et al (2011) Dynamic magnetic resonance imaging assessment of vascular targeting agent effects in rat intracerebral tumors. Neuro Oncol 13:51–60

    Article  PubMed  Google Scholar 

  32. Skuli N, Monferran S, Delmas C et al (2009) Alphavbeta3/alphavbeta5 integrins-fak-rhob: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 69:3308–3316

    Article  CAS  PubMed  Google Scholar 

  33. Goodman SL, Holzemann G, Sulyok GA, Kessler H (2002) Nanomolar small molecule inhibitors for alphaV(beta)6, alphaV(beta)5, and alphaV(beta)3 integrins. J Med Chem 45:1045–1051

    Article  CAS  PubMed  Google Scholar 

  34. Friedlander M, Theesfeld CL, Sugita M et al (1996) Involvment of integrins alphaVbeta 3 and alphaVbeta5 in ocular neovascular diseases. Proc Natl Acad Sci U S A 93:9764–9769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hammes HP, Brownlee M, Jonczyk A et al (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2:529–533

    Article  CAS  PubMed  Google Scholar 

  36. Gilbert M, Lamborn K, Lassman A, Cloughesy T, Chang S, Lieberman F et al (2007) Tumor tissue delivery of cilengitide after intravenous administration to patients with recurrent glioblastoma. Preliminary data from NABTC protocol 03–02. Neuro Oncol 4:525

    Google Scholar 

  37. Reardon DA, Fink KL, Mikkelsen T et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617

    Article  CAS  PubMed  Google Scholar 

  38. Fink K, Mikkelsen T, Nabors LB et al (2010) Long-term effects of cilengitide, a novel integrin inhibitor in recurrent glioblastoma: a randomized phase II a study. J Clin Oncol 28 Suppl: abstr

    Google Scholar 

  39. Stupp R, Hegi ME, Neyns B et al (2010) Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J Clin Oncol 28:2712–2718

    Article  CAS  PubMed  Google Scholar 

  40. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 10:997–1003

    Article  Google Scholar 

  41. Nabors LS, Mikkelsen T, Hegi ME et al; for the New Approaches to Brain Tumor Therpay (NABTT) Central Nervous System Consortium (2012) A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastomas (NABTT 0306). Cancer 118(22):5601–5607.

    Google Scholar 

  42. Plunkett ML, Tel-Tsur Z, Bera M et al (2002) A novel anti-angiogenic/anti-metastatic peptide, ATN-161 (ac-PHSCN-NH2), which targets multiple fully activated integrins including alpha-5 beta-1 and alpha-v beta-3, leads to increased anti-tumor activity and increased survival in multiple tumor models when combined with chemotherapy. Eur J Cancer 38(Suppl 7):79

    Google Scholar 

  43. Khalili P, Arakelian A, Chen G et al (2006) A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther 5:2271–2280

    Article  CAS  PubMed  Google Scholar 

  44. Cianfrocca ME, Kimmel KA, Gallo J et al (2006) Phase 1 trial of the antiangiogenic peptide ATN-161 (ac-PHSCN-NH2), a beta integrin antagonist in patients with solid tumours. Br J Cancer 94:1621–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner S, Rothweiler F, Anhorn MG et al (2010) Enhanced drug targeting by attachment of an anti alphaV integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials 31:2388–2398

    Article  CAS  PubMed  Google Scholar 

  46. Reynolds AR, Hart IR, Watson AR et al (2009) Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15:392–400

    Article  CAS  PubMed  Google Scholar 

  47. Weller M, Reardon D, Nabors B, Stupp R (2009) Will integrin inhibitors have proangiogenic effects in the clinic? Nat Med 15:726

    Article  CAS  PubMed  Google Scholar 

  48. Legler DF, Wiedle G, Ross FP, Imhof BA (2001) Superactivation of integrin alphaVbeta3 by low antagonist concentrations. J Cell Sci 114:1545–1553

    CAS  PubMed  Google Scholar 

  49. Weis SM, Stupack DG, Cheresh DA (2009) Agonizing integrin antagonists? Cancer Cell 15:359–361

    Article  CAS  PubMed  Google Scholar 

  50. Tabatabai G, Tonn JC, Stupp R, Weller M (2011) The role of integrins in glioma biology and anti-glioma therapies. Curr Pharm Des 17:2402–2410

    Article  CAS  PubMed  Google Scholar 

  51. van der Horst G (2011) Targeting of α(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia 13(6):516–525

    Article  PubMed  PubMed Central  Google Scholar 

  52. van der Horst G et al (2014) Targeting of alpha-V integrins reduces malignancy of bladder carcinoma. Plos One 9(9):e108464

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cirkel et al (2016) A dose escalating phase I study of GLPG0187, a broad spectrum integrin receptor antagonist, in adult patients with progressive high-grade glioma and other advanced solid malignancies. Invest New Drugs 34:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, Aldape KD, Lhermitte B, Pietsch T, Grujicic D, Steinbach JP, Wick W, Tarnawski R, Nam DH, Hau P, Weyerbrock A, Taphoorn MJ, Shen CC, Rao N, Thurzo L, Herrlinger U, Gupta T, Kortmann RD, Adamska K, McBain C, Brandes AA, Tonn JC, Schnell O, Wiegel T, Kim CY, Nabors LB, Reardon DA, van den Bent MJ, Hicking C, Markivskyy A, Picard M, Weller M, European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1100–1108

    Google Scholar 

  55. Nabors et al (2015) End of the road: confounding results of the CORE trial terminate the arduous journey of cilengitide for glioblastoma. Neuro-Oncology 17(5):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weller M et al (2016) Oncotarget 7(12):15018–32

    Google Scholar 

  57. Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, Esposito I, Weichert W, Kessler H, Wester HJ (2017) In Vivo PET imaging of the cancer integrin αvβ6 Using 68Ga-Labeled Cyclic RGD Nonapeptides. J Nucl Med 58(4):671–677

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazaleh Tabatabai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tabatabai, G. (2017). The Role of Integrins in Angiogenesis. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_2

Download citation

Publish with us

Policies and ethics